Мутность воды. Теория и практика измерения мутности. Турбидиметрия и нефелометрия Единицы мутности воды


4. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)

5. ИЗДАНИЕ (сентябрь 2003 г.) с Изменением N 1, утвержденным в феврале 1985 г. (ИУС 5-85)


Настоящий стандарт распространяется на питьевую воду и устанавливает органолептические методы определения запаха, вкуса и привкуса и фотометрические методы определения цветности и мутности.

1. ОТБОР ПРОБ

1. ОТБОР ПРОБ

1.1. Отбор проб - по ГОСТ 24481 *.

________________
* На территории Российской Федерации действует ГОСТ Р 51593-2000 .

1.2. Объем пробы воды не должен быть менее 500 см.

1.3. Пробы воды для определения запаха, вкуса, привкуса и цветности не консервируют. Определение производят не позднее чем через 2 ч после отбора пробы.

2. ОРГАНОЛЕПТИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗАПАХА

2.1. Органолептическими методами определяют характер и интенсивность запаха.

2.2. Аппаратура, материалы

Для проведения испытаний используют следующую аппаратуру:

колбы плоскодонные с притертыми пробками по ГОСТ 1770 , вместимостью 250-350 см;

стекло часовое;

баню водяную.

2.3. Проведение испытания

2.3.1. Характер запаха воды определяют ощущением воспринимаемого запаха (землистый, хлорный, нефтепродуктов и др.).

2.3.2. Определение запаха при 20 °С

В колбу с притертой пробкой вместимостью 250-350 см отмеривают 100 см испытуемой воды температурой 20 °С. Колбу закрывают пробкой, содержимое колбы несколько раз перемешивают вращательными движениями, после чего колбу открывают и определяют характер и интенсивность запаха.

2.3.3. Определение запаха при 60 °С

В колбу отмеривают 100 см испытуемой воды. Горлышко колбы закрывают часовым стеклом и подогревают на водяной бане до 50-60 °С.

Содержимое колбы несколько раз перемешивают вращательными движениями.

Сдвигая стекло в сторону, быстро определяют характер и интенсивность запаха.

2.3.4. Интенсивность запаха воды определяют при 20 и 60 °С и оценивают по пятибалльной системе согласно требованиям табл.1.

Таблица 1

Интенсивность
запаха

Характер проявления запаха

Оценка интенсивности
запаха, балл

Запах не ощущается

Очень слабая

Запах не ощущается потребителем, но обнаруживается при лабораторном исследовании

Запах замечается потребителем, если обратить на это его внимание

Заметная

Запах легко замечается и вызывает неодобрительный отзыв о воде

Отчетливая

Запах обращает на себя внимание и заставляет воздержаться от питья

Очень сильная

Запах настолько сильный, что делает воду непригодной к употреблению

3. ОРГАНОЛЕПТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ВКУСА

3.1. Органолептическим методом определяют характер и интенсивность вкуса и привкуса.

Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький.

Все другие виды вкусовых ощущений называются привкусами.

3.2. Проведение испытания

3.2.1. Характер вкуса или привкуса определяют ощущением воспринимаемого вкуса или привкуса (соленый, кислый, щелочной, металлический и т.д.).

3.2.2. Испытуемую воду набирают в рот малыми порциями, не проглатывая, задерживают 3-5 с.

3.2.3. Интенсивность вкуса и привкуса определяют при 20 °С и оценивают по пятибалльной системе согласно требованиям табл.2.

Таблица 2

Интенсивность
вкуса и
привкуса

Характер проявления вкуса и привкуса

Оценка интенсивности
вкуса и привкуса,
балл

Вкус и привкус не ощущаются

Очень слабая

Вкус и привкус не ощущаются потребителем, но обнаруживаются при лабораторном исследовании

Вкус и привкус замечаются потребителем, если обратить на это его внимание

Заметная

Вкус и привкус легко замечаются и вызывают неодобрительный отзыв о воде

Отчетливая

Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья

Очень сильная

Вкус и привкус настолько сильные, что делают воду непригодной к употреблению

4. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЦВЕТНОСТИ


Цветность воды определяют фотометрически - путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет природной воды.

4.1. Аппаратура, материалы, реактивы

Для проведения испытаний применяют следующие аппаратуру, материалы, реактивы:

фотоэлектроколориметр (ФЭК) с синим светофильтром (=413 нм);

кюветы толщиной поглощающего свет слоя 5-10 см;

колбы мерные по ГОСТ 1770 , вместимостью 1000 см;

пипетки мерные по ГОСТ 29227 , вместимостью 1, 5, 10 см с делениями на 0,1 см;

цилиндры Несслера на 100 см;

калий двухромовокислый по ГОСТ 4220 ;

кобальт сернокислый по ГОСТ 4462 ;

кислоту серную по ГОСТ 4204 , плотностью 1,84 г/см;

воду дистиллированную по ГОСТ 6709 ;

фильтры мембранные N 4.

Все реактивы, используемые в анализе, должны быть квалификации "чистые для анализа".

(Измененная редакция, Изм. N 1).

4.2. Подготовка к испытанию

4.2.1. Приготовление основного стандартного раствора (раствор N 1)

0,0875 г двухромовокислого калия (КСrО), 2,0 г сернокислого кобальта (CoSO·7HO) и 1 см серной кислоты (плотностью 1,84 г/см) растворяют в дистиллированной воде и доводят объем раствора до 1 дм. Раствор соответствует цветности 500°.

4.2.2. Приготовление разбавленного раствора серной кислоты (раствор N 2)

1 см концентрированной серной кислоты плотностью 1,84 г/см доводят дистиллированной водой до 1 дм.

4.2.3. Приготовление шкалы цветности

Для приготовления шкалы цветности используют набор цилиндров Несслера вместимостью 100 см.

В каждом цилиндре смешивают раствор N 1 и раствор N 2 в соотношении, указанном на шкале цветности (табл.3).

Шкала цветности

Таблица 3

Раствор N 1, см

Раствор N 2, см

Градусы цветности


Раствор в каждом цилиндре соответствует определенному градусу цветности. Шкалу цветности хранят в темном месте. Через каждые 2-3 месяца ее заменяют.

4.2.4. Построение градуировочного графика

Градуировочный график строят по шкале цветности. Полученные значения оптических плотностей и соответствующие им градусы цветности наносят на график.

4.2.5. Проведение испытаний

В цилиндр Несслера отмеривают 100 см профильтрованной через мембранный фильтр исследуемой воды и сравнивают со шкалой цветности, производя просмотр сверху на белом фоне. Если исследуемая проба воды имеет цветность выше 70°, пробу следует разбавить дистиллированной водой в определенном соотношении до получения окраски исследуемой воды, сравнимой с окраской шкалы цветности.

Полученный результат умножают на число, соответствующее разбавлению.

При определении цветности с помощью электрофотоколориметра используют кюветы толщиной поглощающего свет слоя 5-10 см. Контрольной жидкостью служит дистиллированная вода, из которой удалены взвешенные вещества путем фильтрации через мембранные фильтры N 4.

Оптическая плотность фильтрата исследуемой пробы воды измеряют в синей части спектра со светофильтром при =413 нм.

Цветность определяют по градуировочному графику и выражают в градусах цветности.

5. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МУТНОСТИ

5.1. Определение мутности проводят не позднее чем через 24 ч после отбора пробы.

Проба может быть законсервирована добавлением 2-4 см хлороформа на 1 дм воды.

Мутность воды определяют фотометрически - путем сравнения проб исследуемой воды со стандартными суспензиями.

Результаты измерений выражают в мг/дм (при использовании основной стандартной суспензии каолина) или в ЕМ/дм (единицы мутности на дм) (при использовании основной стандартной суспензии формазина). Переход от мг/дм к ЕМ/дм осуществляют, исходя из соотношения: 1,5 мг/дм каолина соответствуют 2,6 ЕМ/дм формазина или 1 ЕМ/дм соответствует 0,58 мг/дм.

5.2. Для проведения испытаний применяют следующие аппаратуру, материалы, реактивы:

фотоэлектроколориметр любой марки с зеленым светофильтром =530 нм;

кюветы с толщиной поглощающего свет слоя 50 и 100 мм;

весы лабораторные по ГОСТ 24104 *, класс точности 1, 2;
_________________
* С 1 июля 2002 г. введен в действие ГОСТ 24104-2001 **.

** На территории Российской Федерации документ не действует. Действует ГОСТ Р 53228-2008 , здесь и далее по тексту. - Примечание изготовителя базы данных.

шкаф сушильный;

центрифуга;

тигли фарфоровые по ГОСТ 9147 ;

прибор для фильтрования через мембранные фильтры с водоструйным насосом;

пипетки мерные по ГОСТ 29227 , вместимостью 25, 100 см;

пипетки мерные по ГОСТ 29227 , вместимостью 1, 2, 5, 10 см с делениями на 0,1 см;

цилиндры мерные по ГОСТ 1770 , вместимостью 500 и 1000 см;

каолин обогащенный для парфюмерной промышленности по ГОСТ 21285 или для кабельной промышленности по ГОСТ 21288 ;

калия пирофосфат КРО·3НО или натрия пирофосфат NaPO·3HO;

гидразинсульфат (NH)·HSO по ГОСТ 5841 ;

гексаметилентетрамин для монокристаллов (CH)N;

ртуть хлорная;

формалин по ГОСТ 1625 ;

хлороформ по ГОСТ 20015 ;

вода дистиллированная по ГОСТ 6709 и бидистиллированная;

фильтр мембранный с диаметром пор 0,5-0,8 мкм, который должен быть подготовлен к анализу в соответствии с указаниями завода-изготовителя.

Фильтры мембранные (нитроцеллюлозные) проверяют на отсутствие трещин, отверстий и т.п., помещают по одному на поверхность дистиллированной воды, нагретой до 80 °С в стакане (в чашке для выпаривания, эмалированной кастрюле), медленно доводят до кипения на слабом огне, после чего воду заменяют и кипятят 10 мин. Смену воды и последующее кипячение повторяют три-пять раз до полного удаления остатков растворителей из фильтров.

Фильтрующие мембраны "Владипор" типа ФМА-МА, визуально проверенные на отсутствие трещин, отверстий, пузырей, во избежание скручивания мембран кипятят однократно, соблюдая следующие правила:

в небольшом объеме дистиллированной воды, нагретой до 80-90 °С в сосуде, на дне которого вкладывают сторож для молока или нержавеющую сетку (для ограничения бурного кипения), помещают мембраны и кипятят на слабом огне 15 мин.

После этого мембраны готовы к употреблению.

5.3. Подготовка к испытанию

Стандартные суспензии могут быть изготовлены из каолина или формазина.

5.1-5.3. (Измененная редакция, Изм. N 1).

5.3.1. Приготовление основной стандартной суспензии из каолина

25-30 г каолина хорошо взбалтывают с 3-4 дм дистиллированной воды и оставляют стоять 24 ч. Через 24 ч сифоном отбирают неосветлившуюся часть жидкости. К оставшейся части вновь приливают воду, сильно взбалтывают, снова оставляют в покое на 24 ч и вновь отбирают среднюю неосветлившуюся часть. Эту операцию повторяют трижды, каждый раз присоединяя неосветлившуюся в течение суток суспензию к ранее собранной. Накопленную суспензию хорошо взбалтывают и через трое суток сливают жидкость над осадком, как содержащую слишком мелкие частицы.

К полученному осадку добавляют 100 см дистиллированной воды, взбалтывают и получают основную стандартную суспензию.

Концентрацию основной суспензии определяют весовым методом (не менее чем из двух параллельных проб): 5 см суспензии помещают в тигель, доведенный до постоянной массы, высушивают при температуре 105 °С до постоянной массы, взвешивают и рассчитывают содержание каолина на 1 дм суспензии.

Затем основную стандартную суспензию стабилизируют пирофосфатом калия или натрия (200 мг на 1 дм) и консервируют насыщенным раствором хлорной ртути (1 см на 1 дм), формалином (10 см на 1 дм) или хлороформом (1 см на 1 дм).

Основная стандартная суспензия хранится в течение 6 мес. Эта основная стандартная суспензия должна содержать около 4 г/дм каолина.

5.3.2. Приготовление рабочих стандартных суспензий из каолина

Для приготовления рабочих стандартных суспензий мутности основную стандартную суспензию взбалтывают и готовят из нее суспензию, содержащую 100 мг/дм каолина. Из промежуточной суспензии готовят рабочие суспензии концентрацией 0,5; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 мг/дм. Промежуточная суспензия и все рабочие суспензии готовятся на бидистиллированной воде и хранятся не более суток.

5.3.3. Приготовление основной стандартной суспензии из формазина

5.3.1-5.3.3. (Измененная редакция, Изм. N 1).

5.3.3.1. Приготовление основной стандартной суспензии формазина I, содержащей 0,4 ЕМ в 1 см раствора

Раствор А. 0,5 г гидразинсульфата (NH)·HSO растворяют в дистиллированной воде и доводят объем до 50 см.

Раствор Б. 2,5 г гексаметилентетрамина (CH)N разбавляют в мерной колбе вместимостью 500 см в 25 см дистиллированной воды.

25 см раствора А добавляют к раствору Б и выдерживают (24±2) ч при температуре (25±5) °С. Затем добавляют дистиллированную воду до метки. Основная стандартная суспензия формазина хранится 2 мес и не требует консервации и стабилизации.

5.3.3.2. Приготовление стандартной суспензии формазина II, содержащей 0,04 ЕМ в 1 см раствора

50 см тщательно перемешанной основной стандартной суспензии формазина I разбавляют дистиллированной водой до объема 500 см. Стандартная суспензия формазина II хранится две недели.

5.3.3.1, 5.3.3.2. (Введены дополнительно, Изм. N 1).

5.3.4. Приготовление рабочих стандартных суспензий из формазина

2,5; 5,0; 10,0; 20,0 см предварительно перемешанной стандартной суспензии формазина II доводят до объема 100 см бидистиллированной водой и получают рабочие стандартные суспензии концентрации 1; 2; 4; 8 ЕМ/дм.

5.3.5. Построение градуировочного графика

Градуировочный график строят по стандартным рабочим суспензиям. Полученные значения оптических плотностей и соответствующие им концентрации стандартных суспензий (мг/дм; ЕМ/дм) наносят на график.

5.4. Проведение испытания

Перед проведением испытания во избежание ошибок производят калибровку фотоколориметров по жидким стандартным суспензиям мутности или по набору твердых стандартных суспензий мутности с известной оптической плотностью.

В кювету с толщиной поглощающего свет слоя 100 мм вносят хорошо взболтанную испытуемую пробу и измеряют оптическую плотность в зеленой части спектра (=530 нм). Если цветность измеряемой воды ниже 10° по Сr-Со шкале, то контрольной жидкостью служит бидистиллированная вода. Если цветность измеряемой пробы выше 10° Сr-Со шкалы, то контрольной жидкостью служит испытуемая вода, из которой удалены взвешенные вещества центрифугированием (центрифугируют 5 мин при 3000 мин) или фильтрованием через мембранный фильтр с диаметром пор 0,5-0,8 мкм.

Содержание мутности в мг/дм или ЕМ/дм определяют по соответствующему градуировочному графику.

Окончательный результат определения выражают в мг/дм по каолину.

5.3.4, 5.3.5, 5.4. (Измененная редакция, Изм. N 1).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:

официальное издание

Контроль качества воды:
Сб. ГОСТов. - М.: ФГУП

"СТАНДАРТИНФОРМ", 2010

Будете ли вы плавать в мутной воде? А пить ее из скважины? Наверняка, вы предпочтете чистую прозрачную воду, в которой приятно понежиться и которую не опасно пить. Сегодня поговорим о том, что такое мутность воды. Пригодна ли она для использования, и какая опасность кроется в примесях? Как изучить качество? И как избавится от негативных явлений?

Что такое мутность?

Под загрязнением воды принято понимать изменение ее свойств при воздействии химических или органических веществ. При обнаружении таковых использование живительной жидкости нужно приостановить, поскольку это может быть опасно для организма человека.

В лабораториях на очистительных станциях делают анализ на:

  • мутность и цветность воды;
  • запах и кислотность;
  • содержание органических элементов;
  • наличие тяжелых металлов;
  • химическое потребление кислорода и пр.

Загрязненная жидкость содержит неорганические и органические тонкодисперсные взвеси. Мутность воды - это показатель, характеризующий степень прозрачности.

Причины возникновения мутности

О мутности говорят тогда, когда в воде чаще всего появляются твердые частицы песка, гальки, ила. Их смывают осадки, талые воды в реку, также они могут возникнуть в результате разрушения скважины.

Меньше всего примесей зимой. Больше всего - весной и летом, когда часто возникают паводки и наблюдается сезонный прирост планктона и водорослей.

Государственные стандарты

В нашей стране мутность воды определяется путем сравнивания двух образцов: стандартной и взятой непосредственно из водоема. Используют фотометрический метод. Результат выражается в двух видах:

  • при использовании суспензии коалина - в мг/дм3;
  • при использовании формазина - ЕМ/дм3.

Последний принятый Международной организацией Стандартизации. Обозначается как ЕМФ (Единица мутности по формазину).

В России приняты такие нормы мутности воды. ГОСТ для питьевой - 2,6 ЕМФ, для обеззараживающей - 1,5 ЕМФ.

Как определить качество воды

В любом водоканале есть лаборатория, в которой проводятся исследования качества воды, поставляемой в трубы. Замеры проводятся по несколько раз в день, чтобы не пропустить ни единого изменения. Рассмотрим основные мутности воды.

Суть любого метода состоит в том, чтобы через жидкость прошел луч света. В абсолютно прозрачной колбе он остается неизменным, лишь немного рассеивается и имеет незначительное отклонение угла. Если в воде присутствуют взвешенные частицы, они по-разному будут препятствовать прохождению луча света. Этот факт зафиксирует отражающий прибор.

На сегодняшний день мутность питьевой воды можно определять такими методами:

  1. Фотометрически. Есть два варианта исследования: турбидиметрический, который фиксирует ослабленные лучи, и нефелометрический, результатом которого является отражение рассеянного света.
  2. Визуально. Степень загрязнения оценивается по шкале, высотой 10-12 см, в специальной мутномерной пробирке.

Виды взвешенных частиц

Любые примеси, находящиеся в питьевой воде, имеют свои свойства. Они характеризуются по такому параметру, как гидравлическая крупность, которая выражается в скорости оседания на дно в неподвижной воде при температуре 10 °С. Приведем примеры взвешенных частиц в таблице.

Взвешенные частицы и их характеристики

Из истории измерения мутности

Очевидно, что мутность воды - это один из самых важных факторов, влияющих на качество потребляемой жидкости. Даже небольшие изменения в стандартах свидетельствуют о наличии патогенной флоры, которая может привести к различным заболеваниям у человека. И как только человечество поняло, что чистота - залог здоровья, сразу возникла необходимость проверять воду.

Первыми людьми, придумавшими специальную технологию, чтобы в лабораторных условиях изучать жидкость, стали Уиппл и Джексон, а их прибор назвали "свечной турбидиметр Джексона". Он представлял собой колбу, которую держали над свечей. Внутрь помещалась вода для исследования, в которую наливали первую в мире суспензию на основе кизельгура. Жидкость наливалась медленно до тех пор, пока свет от свечи полностью не рассеивался. Затем смотрели на шкалу и переводили данные в джексоновские единицы мутности.

Несмотря на то что полимеров в те времена еще не было и для суспензий готовили материалы из природных ресурсов, этот метод хоть и давал погрешности, но использовали его очень долго.

Лишь в 1926 году ученые Кингсбери и Кларк химическим путем создали формазин. Это идеальное вещество для изучения мутности воды. Для приготовления суспензии необходимо взять литр дистиллированной воды, 5,00 г сульфата гидразина и 50,00 г гексаметилентетрамина.

Метод качественного определения мутности

Понадобятся пробирка высотой 10-12 см, лист черного картона.

Последовательность действий:

  1. Наберите в пробирку воды.
  2. Колбу поставьте так, чтобы она стояла на черном фоне, а сбоку был источник света: солнце или лампа накаливания.
  3. Визуально определите степень мутности: прозрачная вода, слабо загрязненная, слабо мутная, мутная, очень мутная.

Метод количественного определения мутности

Понадобится: колба для анализа (высота 6 см, диаметр 2,5 см), экран для трубки, шприц, пипетка, образец шрифта (высота 3,5 мм, ширина линии 0,35 мм)

Последовательность действий:

  1. В колбу наберите воду. Установите ее на штативе.
  2. Вниз под колбу положите образец шрифта. Это может быть просто буква.
  3. Вокруг трубки нужно создать экран для отражения света.
  4. Источник света поместите сверху прямо над трубкой.
  5. Пипеткой отбирайте воду до тех пор, пока не увидите букву.
  6. Замерьте высоту столба с водой. Данные должны быть с точностью до 10 мм.

Выводы

Мутность воды - это важный фактор, определяющий степень загрязнения жидкости. В современном мире на всех очистительных станциях внимательно следят за этим показателем, чтобы правильно выбрать метод дальнейшей фильтрации воды. Проверить мутность можно и в домашних условиях, использовав методы качественного и количественного исследований.

Мутность (или турбидность) является одним из самых распространенных «интуитивных» параметров, определяющих качество воды, ведь это её первая очевидная характеристика, заметная даже непрофессионалу в области водоочистки. Действительно, мутность может говорить о многом, от качества обеззараживания воды до состояния наших озёр, океанов, ручьёв и других природных водоёмов.

Что такое мутность?

Если говорить простым языком, под мутностью понимают «облачность» воды. Она, как правило, порождается взвешенными частицами – это, например, фрагменты водорослей, различная грязь, минералы, различные белки и масла или даже бактерии. Измерения мутности осуществляются путём прохождения луча света сквозь образец раствора и определением содержания взвешенных частиц. Чем выше их содержание в образце – тем выше показатель турбидности.

Следует сказать, что, хотя мутность находится в корреляции со взвешенными твёрдыми частицами, её не следует путать с параметрами общего количества взвешенных твёрдых частиц (TSS). Измерения TSS – это количественное измерение массы твёрдых веществ, взвешенных в образце, путем взвешивания разделённых твердых веществ.

Важность определения мутности

Мутность воды также может указывать на загрязнение окружающей среды. Например, после штормов грязная вода может стекать с сельскохозяйственных полей, лесозаготовительных фабрик, строительных объектов и т. д. и быстро наводнять природные воды несвойственными им осадками. Это пагубно сказывается на жизни водных обитателей и растений и требует множества усилий для исправления ситуации. Измерения мутности также практикуются в производстве напитков и продуктов питания.

Как измеряется мутность?

Существует широкий ряд методов анализа мутности, от визуальной оценки до использования полномасштабных приборов количественного измерения содержания взвешенных частиц. Определённые визуальные методы идеально подходят для измерений в полевых условиях. Это, например, так называемый диск Секки. Его опускают на веревке вместе с прикреплённым к нему грузиком в речную воду, с тем, чтобы диск погружался вниз до того момента, пока он перестаёт быть видимым. Расстояние, на которое диск ушёл под воду, и будет считаться мерой мутности воды.

Наилучший способ измерить мутность в обширном спектре образцов – это использование нефелометра (или мутномера – измерителя мутности). В них используется световой и фотодетектор, с помощью которых измеряют степень рассеивания света. Затем эти данные переводят в так называемые нефелометрические единицы мутности (NTU) или единицы мутности по формазину (FTU).

Как уменьшить мутность?

Большинство мер по снижению мутности направлены на сокращение неконтролируемого выхода загрязнённых сточных вод. Между тем, и питьевая и сточная воды проходят специальную обработку для снижения мутности. Для осветления воду перемешивают с коагулянтом – квасцами. Взвешенные частицы обладают отрицательным зарядом, поэтому отталкиваются друг от друга, образуя мелкодисперсные частицы. С попаданием в воду квасцов взвешенный материал нейтрализуется до образования крупных устойчивых частиц, называемых «флоки», которые легко удаляются с помощью систем фильтрации.

Правила допустимого количества взвешенных частиц устанавливаются нормативами для обеспечения безопасности питьевой воды и эффективности её очистки. Так, например, согласно требованиям Агентства по охране окружающей среды США (USEPA), 95% питьевой воды в течение одного месяца должны иметь показатель мутности менее 0.5 NTU, и в то же время ни один отдельно взятый образец этой воды не должен превышать 5 NTU в любой момент времени.

Особенности выбора мутномера

Измерители мутности – это устройства, наделённые источником света, объективом и детектором, который располагается под углом 90° от источника света. В то время, как анализируемый материал помещается между источником света и детектором, находящиеся в нём частицы рассеивают свет так, что он достигает детектора, определяющего интенсивность рассеянного света и сравнивает эти значения со стандартами мутности. Некоторые приборы снабжены дополнительными детекторами для анализа образцов с очень высокой мутностью.

Общепринятые единицы определения мутности

Знание стандартов мутности также служит немаловажной частью измерений. В основном современные стандарты строятся на формазине – синтетическом полимере с частицами однородного размера. Он производится путём реакции сульфата гидразина с гексаметилентетрамином. Благодаря стабильности формазина его признают практически все контролирующие организации, такие как ISO, EPA и ASBC. Данный стандарт носит название FTU.

Большинство других единиц мутности основаны на FTU, но варьируются в зависимости от метода измерения. Вот несколько примеров:

1. Нефелометрические единицы мутности (NTU): единица, сходная с FTU, но используемая при измерении мутности приборами, соответствующими стандартам EPA.

2. Нефелометрическая единица измерения мутности (NTRU): измерения на основе стандарта EPA с применением коэффициентного метода определения мутности.

3. Нефелометрические единицы формазина (FNU): они также сходны с FTU, но характерны для измерителей со стандартами ISO 7027.

4. Шкала цветности, разработанная Американским обществом химиков пивоваренной промышленности (ASBC-FTU): используется измерителями, спроектированными по стандартам ASBC.

Для принятия эффективного решения о выборе стандарта также следует знать, что наиболее распространёнными из них сегодня являются EPA 180.1 и ISO 7027.

EPA-совместимые измерители мутности

Измерители, совместимые с EPA, соответствуют стандарту 180.1 определения мутности в образцах питьевой воды, а также грунтовых вод, стоков, морской воды и поверхностных вод. Они лучше всего работают в промежутке 0-40 NTU. Подобные измерители наделены вольфрамовыми лампами в качестве источников света. Эти лампы функционируют при цветовой температуре между 2200-3000 °К. Общий путь, проделанный падающим и рассеянным светом, не должен быть больше 10 см. Детектор такого прибора центрирован при 90° к падению луча и не допускается выход этого угла за рамки ± 30° от 90°. Прибор также наделяют спектральным пиковым откликом в промежутке 400-600 нм. И, наконец, необходимо, чтобы чувствительность мутномера выявляла разность значений 0.02 NTU и меньше в образцах с турбидностью менее единицы.

Отсюда можно сделать выводы, что EPA-совместимые измерители:

(+) Отлично подходят для измерений образцов с пониженной мутностью, таких как питьевая вода

(+) Признаются всеми стандартами EPA в плане формирования отчётности

(-) Плохо работают с цветными образцами ввиду поглощения белого света

ISO совместимые мутномеры

Эти измерители стоят по своей популярности на втором месте и аналогичны EPA-совместимым, но с некоторыми ключевыми отличиями. Во-первых, в роли источника света здесь выступает инфракрасный 860 нм светодиод. Во-вторых, спектральная ширина излучающей полосы не должна быть больше 60 нм.

ISO-измерители снабжены световыми детекторами примерно на 90° от источника излучения, хотя данный стандарт также поддерживает использование детекторов под другими углами.

В общем и целом, измерители ISO:

(+) Используют инфракрасный светодиод, который устраняет помехи, создаваемые цветностью образца

(+) Повышают точность анализа в более мутных образцах

(-) Неприемлемы стандартом EPA в США для формирования отчётности

Независимо от того, какой тип прибора вы выберете, обязательно проконсультируйтесь с любыми регулирующими организациями, особенно если вам необходимо формировать отчётность по измерениям. Также следует знать, что оба вышеописанных типа приборов могут функционировать в соответствии со стандартами формазина, а также коммерчески доступными стандартами AMCO-AEPA-1, которые признаны USEPA в качестве первичного эталона.

Шесть советов, которые помогут получить точные показатели мутности

Теперь, когда вы знаете, как выполнять измерения и какие мутномеры выбрать, приведём выдержки из лучших измерительных практик:

1. Начинайте измерения с использования качественных кювет

Как и при колориметрических тестах на хлор или ХПК, мы используем для размещения нашего образца для измерений специальные кюветы. Они являются значимой частью исследования, ведь свет проходит сквозь них точно так же, как через образец. Поэтому перед измерениями убедитесь, что ваши кюветы чистые и не содержат царапин, мешающих прохождению света через стекло, что порождает ложно высокие результаты. К счастью, ошибки в измерениях легко исправить, просто заменив кювету с видимыми царапинами на новую.

2. «Умасливайте» ваши кюветы

Так же, как видимые царапины стекла оказывают влияние на показатели мутности, незначительные дефекты тоже могут внести свой негативный вклад в результаты анализа. Эти, казалось бы, микроскопические царапины, оказывают в особенности сильное влияние, если вы работаете с образцами в низком диапазоне – например, с питьевой водой.

Для маскировки мелких дефектов в стекле можно использовать силиконовое масло. Оно имеет тот же показатель преломления, что и стекло, поэтому не будет мешать показаниям. Просто возьмите несколько капель масла, добавьте их в кювету, а затем тщательно протрите ёмкость безворсовой тканью. Если всё было сделано правильно, то «на выходе» вы обнаружите кювету, которая кажется практически сухой, без видимого масла на её поверхности.

Важно отметить, что силиконовое масло эффективно только при заполнении мелких дефектов в стекле. Большие видимые царапины следует рассматривать как повод для замены стекла.

3. Используйте современные калибровочные стандарты

Мы все согласимся с тем, что ключом к точным результатам является точная калибровка, а она, в свою очередь, складывается из надёжных стандартов растворов.

Хотя современные стандарты на основе формазина более стабильны и надежны, чем используемые ранее, сроки их хранения всё ещё сильно ограничены. Так, например, согласно EPA, стандарты 40 НТУ, производимые внутри страны, следует обновлять ежемесячно и готовить новые растворы для каждой новой калибровки, поскольку старые имеют свойство коагулировать и оседать на дно ёмкости.

Чтобы сэкономить время, можно использовать стандарты AMCO-AEPA-1, которые в идеале должны поставляться в виде набора герметично запечатанных флаконов, легко размещаемых в кюветах. Кроме того, эти стандарты намного более устойчивы к хранению, чем формазиновые. Срок их использования может достигать трёх лет.

4. Тщательно очищайте ваши кюветы

Мы можем оставить после еды грязную посуду, чтобы вымыть её позже, но, пожалуйста, не стоит делать того же самого с вашими грязными кюветами. Пятна на кювете могут поглощать или рассеивать свет, что приведёт к тому, что вместе с анализом мутности образца вы будете анализировать и мутность вашего грязного стекла.

Если на стекле появляются пятна, используйте разбавленную кислоту или другой очиститель для их удаления. После чистки обязательно промойте ваши кюветы деионизированной водой высокой чистоты, пропущенной через фильтрующую мембрану ≤ 0.2 мкм.

5. Используйте метод отношения

По мере увеличения количества взвешенных частиц в образце они имеют склонность к перемещению, а кроме того часть света, проходящего сквозь образец высокой мутности, отражается. По этим двум причинам показатели мутности будут отличаться от фактического значения.

Обе эти проблемы можно решить. В первом случае следует разбавить сильно мутные образцы прозрачной жидкостью. После этого образец подлежит исследованию как нормальный, а затем показатели корректируют с учётов коэффициента разбавления. Стандарт EPA 180.1 требует перед измерением разбавлять любые образцы со значениями выше 40 NTU.

Во втором случае используют метод отношения, суть которого – в использовании различных углов падения луча для компенсации потерянного света. Показания мутности в этом случае корректируются математическими расчётными методами изменения угла падения света, изложенными в стандартах 2130B и USEPA.

6. Избегайте конденсата на ваших кюветах

И, наконец, на показатели мутности оказывает влияние конденсат, который может появиться на стекле, особенно в случае, если ваши образцы имеют низкую температуру. Конденсат на внешней стороне стекла препятствует прохождению света через образцы, что приводит к ошибочным показания мутности. Этого можно избежать, просто обтирая кюветы чистым кусочком сухой ткани без ворса.

По материалам статьи Дэйва Масулли, выпускника Колледжа Род-Айленда, обладателя ученой степени по химии и биологии, сотрудника компании Hanna Instruments . Среди главных увлечений Дэйва – научный анализ продуктов питания под чашечку хорошего кофе.

Мутность воды - один из основных показателей, характеризующих ее качество. Мутностью называется снижение степени прозрачности жидкости из-за присутствия в ней мелкодисперсных взвешенных частиц различного происхождения, таких как песок, глина, ил, водоросли, а также микроорганизмы и планктонные организмы. Размер частиц, обуславливающих мутность воды, лежит в диапазоне 0,004-1,0 мм.

Мутность является полезным индикатором общей степени загрязненности воды, которая может являться результатом попадания в источники водозабора дождевых и талых вод, смывающих загрязнения с прибрежных зон, а также промышленных и сельскохозяйственных стоков.

Мутная вода непригодна для использования в быту, в связи с чем необходима ее очистка с помощью фильтров.

ИЗМЕРЕНИЕ МУТНОСТИ

Для определения величины мутности измеряют изменение интенсивности пучка света, проходящего через образец воды, вследствие рассеяния света присутствующими в воде взвешенными частицами. В Российской Федерации на сегодняшний день в качестве официальной единицы измерения мутности используют ЕМФ (единицы мутности по формазину на литр; англ. - FTU) или мг/л (по каолину). Название единиц измерения обусловлено тем, какие вещества используются для приготовления эталонов суспензий для проведения анализа - полимера формазина или мелкодисперсной белой глины каолина. Альтернативной единицей измерения, которая в основном используется за рубежом, в том числе и Всемирной организацией здравоохранения (ВОЗ), является NTU (Nephelometric Turbidity Unit). Численно мутность, выраженная в единицах FTU и NTU, имеет одинаковое значение, однако отличается от таковой, измеренной в единицах мг/л (1 FTU = 1 NTU = 0,58 мг/л каолина).

НОРМЫ МУТНОСТИ ДЛЯ ПИТЬЕВОЙ ВОДЫ

Мутность питьевой воды является важным органолептическим показателем, определяющим ее потребительские характеристики. Мутная вода может представлять опасность для человека при использовании ее для питья и приготовления пищи, поскольку в данном случае сложно предсказать присутствие каких-либо конкретно соединений в воде - опасных или неопасных. Кроме того, в мутной воде, в связи с высоким содержанием органических веществ, создаются благоприятные условия для роста и развития различных микроорганизмов, которые также могут представлять опасность для здоровья человека. Помимо этого, употребление для питья мутной воды вызывает эстетическое отторжение. Всемирная организация здравоохранения (ВОЗ) ввела следующие нормативы по мутности питьевой воды: с точки зрения внешнего вида мутность не должна превышать 5 NTU, с точки зрения микробиологической безопасности воды - 1 NTU. В РФ, в соответствии с нормативами СанПиН 2.1.4.1074-01, мутность питьевой воды не должна превышать 2,6 ЕМФ или 1,5 мг/л каолина.

Фильтры для очистки воды БАРЬЕР способны удалять взвешенные вещества, присутствующие в воде и обуславливающие ее мутность, помогая сделать воду приятной для питья и безопасной для здоровья.

Повышенная мутность характерна как для артезианской, колодезной, так и для водопроводной воды. Мутность вызывают взвешенные и коллоидные частицы, рассеивающие свет. Это могут быть как органические, так и неорганические вещества или те и другие одновременно. Сами по себе взвешенные частицы в большинстве случаев не представляет серьезной угрозы для здоровья, но для современного оборудования, они могут стать причиной преждевременного выхода из строя. Повышенная мутность водопроводной воды часто связана с механическим отрывом продуктов коррозии трубопроводов и биоплёнок, развивающихся в системе центрального водоснабжения. Причиной повышенной мутности артезианских вод обычно являются глинистые или известковые взвеси, а так же образующиеся при контакте с воздухом нерастворимые окислы железа и других металлов.

Качество воды из колодцев наименее стабильно, поскольку грунтовые воды подвержены влиянию внешних факторов. Высокая мутность из колодцев может быть связана с поступлением в грунтовые воды труднорастворимых природных органических веществ из грунтов с техногенным загрязнением. Высокая мутность негативно влияет на эффективность дезинфекции, в результате чего прикрепленные к поверхности частиц микроорганизмы выживают и продолжают развиваться на пути к потребителю. Поэтому снижение мутности часто позволяет улучшить микробиологическое качество воды.

Железо в воде

Высокое содержание железа в водопроводе связано с различными причинами. В водопровод эти примеси попадают в результате коррозии трубопроводов или использования на станциях водоподготовки железосодержащих коагулянтов, а в артезианские воды - в следствие контакта железосодержащих минералами. Содержание железа в артезианских водах в среднем превышают нормативное значение в 2-10 раз. В некоторых случаях превышение может быть до 30-40 раз. Обычно непосредственно после получения артезианская вода не несёт видимых признаков наличия соединений железа, однако при контакте с кислородом воздуха через 2-3 часа возможно появления желтой окраски, а при более продолжительном отстаивании может наблюдаться образование светло-коричневого осадка. Все это является результатом протекания окислительного процесса, в ходе которого выделяется тепло. Стимулирующих развитие в артезианской воде железистых бактерий.

Марганец в воде

Примеси марганца из артезианских скважин обнаруживается одновременно с примесями железа. Источник их поступления один и тот же - растворение марганцесодержащих минералов. Превышение содержания марганца в питьевой воде ухудшает её вкус, а при использовании для хозяйственно-бытовых нужд наблюдается образование тёмных отложений в трубопроводах и на поверхностях нагревательных элементов. Мытье рук с высоким содержанием марганца приводит к неожиданному эффекту - кожа сначала сереет, а потом и вовсе чернеет. При продолжительном уподоблении воды с высоким содержанием марганца повышается риск развития заболеваний нервной системы.

Окисляемость и цветность

Повышенная окисляемость и цветность поверхностных и артезианских источников водоснабжения свидетельствует о наличии примесей природных органических веществ - гуминновых и фульвокислот, являющихся продуктами разложения объектов живой и неживой природы. Высокое содержание органических веществ в поверхностных водах фиксируются в период гниения водорослей (июль - август). Одной из характеристик концентрации органических загрязнений является перманганатная окисляемость. В области залегания торфа, особенно в районах крайнего севера и восточной Сибири, этот параметр может в десятки раз превышать допустимые значение. Сами по себе природные органические вещества не представляют угрозы для здоровья. Однако при одновременном присутствии железа и марганца образуются их органические комплексы, затрудняющие их фильтрацию методом аэрации, то есть окисление кислородом воздуха. Наличие органических веществ природного происхождения затрудняет дезинфекцию воды окислительными методами, так как образуются побочные продукты дезинфекции. К их числу тригалометанны, галогенуксуснаякислота, галокетоны и галоацетонитрил. Большинство исследований показывают, что вещества данной группы обладают концерагенным эффектом, а так же оказывают негативное влияние на органы пищеварительной и эндокринной систем. Основным способом предотвращения образования побочных продуктов дезинфекции является ее глубокая очистка от природных органических веществ перед стадией хлорирования, однако традиционные методы централизованной водоподготовки этого не обеспечивают.

Запах воды. Вода с запахом сероводорода

Запах водопроводной, артезианской и колодезной воды делают её непригодной для употребления. При оценке качества воды потребители ориентируются на индивидуальные ощущения запаха, цвета и вкуса.

Питьевая вода не должна каким-либо запахом, заметным для потребителя.

Причиной запаха водопроводной воды чаще всего является растворенный хлор, поступающий в воду на стадии дезинфекции при централизованной водоподготовке.

Запах артезианской может быть связан с наличием растворенных газов - сероводорода, оксида серы, метана, аммиака и другими.

Некоторые газы могут быть продуктами жизнедеятельности микроорганизмов или результатом техногенного загрязнения источников водоснабжения.

Колодезная вода наиболее подвержена посторонним загрязнениям, поэтому часто неприятный запах может быть связан с присутствием нефтепродуктов и следов бытовой химии.

Нитраты

Нитраты в колодезной и артезианской воде могут представлять серьезную угрозу для здоровья потребителей, поскольку их содержание может в несколько раз превышать действующий норматив на питьевую воду.

Основной причиной поступления нитратов в поверхностные и подземные воды является миграции компонентов удобрений в почвах.

Употребление с высоким содержанием нитратов приводит к развитию метгемоглобинемии - состояния, характеризующегося появления в крови повышенного значения метгемоглобина (>1%), нарушающего перенос кислорода от легких к тканям. В результате отравления нитратами дыхательная функция крови резко нарушается и может начаться развитие цианоза - синюшней окраски кожи и слизистых оболочек.

Кроме того, рядом исследований показано негативное влияние нитратов на усвоение йода в организме и концерогенный эффект продуктов их взаимодействия с различными веществами человеческого организма.

Жесткость воды. Жесткая и мягкая вода

В основном определяется концентрацией в ней ионов кальция и магния.

Существует мнение, что жесткая вода не несет опасности для здоровья потребителей, но это противоречит выводам многолетних исследований одного из крупнейших специалистов по проблемам питания американскому исследователю Полю Брегу. Он считает, что ему удалось установить причину раннего старения человеческого организма. Причиной этого является жесткая вода. По мнению Поля Брега, соли жесткости «зашлаковывают» кровеносные сосуды так же, как и трубы, по которым протекает вода с высоким содержанием солей жесткости. Это приводит к снижению эластичности сосудов, делая их хрупкими. Особенно это проявляется в тонких кровеносных сосудах коры головного мозга, что по мнению Брега, приводит к старческому маразматизму пожилых людей.

Жесткая вода создает целый ряд бытовых проблем, вызывая образование осадков и налетов на поверхности трубопроводов и рабочих элементах бытовой техники. Эта проблема особенно актуальна для приборов с нагревательными элементами - водогрейных котлов (бойлеров), стиральных и посудомоечных машин.

При использовании жесткой воды в быту слой отложений солей кальция и магния на теплопередающих поверхностях постоянно растет, в результате чего снижается эффективность теплопередачи и увеличивается расход тепловой энергии на нагрев. В отдельных случаях возможен перегрев рабочих элементов и их разрушение.

Очистка воды от фтора

Впервые существование фтора предположил великий химик Лавуазье, еще в XVIII веке, но тогда он не смог выделить его из соединений. После него получить фтор в свободномвиде пытались многие известные ученые, но почти все они либо стали инвалидами из-за этих опытов, либо погибли при их проведении. После этого фтор и назвали «разрушающим» или «несущим гибель». И только в конце XIX века удалось методом электролиза выделить фтор из его соединений.

Как видим, фтор очень опасен, и, тем не менееэлемент с такими свойствами является необходимым для множества живых организмов, в том числе и человека. В артезианской воде фтор содержится в виде соединений.

Фтор - это непростой элемент, и граница между его недостатком и избытком в организме трудноуловима. Дозу фтора очень легко превысить, и тогда он становиться для нашего организма тем, чем и является в природе - ядом.

Фтор содержится в различных продуктах питания: в черном и зеленом чае, морепродуктах, морской рыбе, грецких орехах, в крупах - в овсяной, рисе, гречке, яйцах, печени и т.д. Получить фтор из продуктов питание довольно сложно. Взрослому человеку для получения суточной нормы фтора, необходимо съесть 3,5 кг зернового хлеба, или 700 г лосося, 300 г грецких орехов.

Наиболее легко фтор извлекается из воды. Фтор выполняет в нашем организме много необходимых функций. От него зависит состояние костной системы, её прочность и твердость, состояние и рост волос, ногтей и зубов.

Однако, предупреждаем, что необходимо опасаться превышения фтора в организме. В связи с этим, с нашей точки зрения, не желательно, чтобы концентрация фтора превышала 0,5 - 0,8 мг/л, учитывая, что рекомендуется выпивать в сутки до 2 литров чистой воды. При избытке фтора в организме замедляется обмен веществ и рост, деформируются кости скелета, поражается эмаль зубов, человек слабеет и может появиться рвота, учащается дыхание, падает давление, появляется судорога, поражаются почки.