Обслуживание устройств релейной защиты и автоматики. Ремонт и обслуживание устройств релейной защиты Периодичность технического обслуживания устройств рза

Общие положения. На РУ тяговых подстанций электрифицированных железных дорог проводят техническое обслуживание (ТО) релейных и электронных защит и устройств автоматики (РЗА) отходящих ВЛ 6-10, 35,110,154,220 кВ, сборных шин, трансформаторов (включая трансформаторы собственных нужд, тяговых и СЦБ), фидеров контактной сети, ДПР, фидеров ВЛ СЦБ и ПЭ, земляной защиты в РУ - 3,3 кВ, аппаратуры вторичных цепей устройств дистанционного управления и сигнализации.

Электрическое оборудование тяговой подстанции может находиться в работе или под напряжением только с включенной защитой от всех видов напряжений или нару­шений нормальных режимов работы. В случае неисправности или отключения для про­верки какой-либо защиты оставшиеся в работе должны обеспечивать полноценную защиту от возможных повреждений. При необходимости должны вводиться в работу временные защиты. Режим работы включенных устройств релейной защиты и автома­тики должен в каждый момент времени соответствовать режиму работы силового элек­трооборудования.

Техническое обслуживание РЗА складывается из следующих видов работ:

Новое включение, т.е. приемка смонтированных устройств релейной защиты
после монтажа и наладки, испытание и проверка работы;

Первый профилактический контроль, проводимый на второй год
эксплуатации;

Профилактический контроль, выполняемый каждые два года подряд, а
для аппаратуры напряжением до 1000 В - 5 лет подряд, начиная с 3-го года эксплуатации.
Интервал между ними - 1 год;

Частичное профилактическое восстановление, выполняемое по
мере необходимости по результатам проведения профилактического контроля;

Профилактическое восстановление, выполняемое в интервалах между
проведением профилактического контроля.

Внеочередные и послеаварийные проверки в объеме профилакти­ческого восстановления выполняются в зависимости от размеров необходимых изменений, повреждений, неисправностей.

Новое включение содержит подготовку технической документации, оборудо­вания и приборов для испытаний и подготовки электрических схем. Проводятся внешний и внутренний осмотры всех элементов РЗА, проверяется сопротивление изоляции устройств, проверка электрических характеристик элементов устройств РЗА, их взаимодействие, вы­ставление уставок устройств, проверка работы всех цепей присоединения при заданных уставках и подготовка к включению.

Практически те же работы включает в себя первый профилактический контроль.

Профилактический контроль - это периодическая проверка работоспо­собности РЗА с целью выявления и устранения внезапных отказов. Он состоит из внешне­го осмотра с чисткой от пыли, измерения сопротивления изоляции мегаомметром, провер­ки срабатывания защит и подготовки устройств РЗА к включению.

Кроме указанных операций, соответствующих профилактическому контролю, при профилактическом восстановлении добавляется еще проверка механической части аппаратуры, электрических характеристик аппаратуры РЗА и измерительных транс­форматоров.

Сначала подготавливают всю техническую документацию: материалы, скорректи­рованные при монтаже и наладке (проектные чертежи и схемы, пояснительные записки,


кабельные журналы и т.п.); заводские материалы (технические описания и инструкции по экс­плуатации, паспорта электрооборудования и т. д.); протоколы наладки и испытаний. Эта документация предоставляется монтажной и наладочной организациями.

Наладочная организация предоставляет карты уставок и защит. Подготавливаются испытательные приборы, устройства, инструмент, запасные части. Чтобы ошибочно не подать напряжение на соседние панели и устройства, все кабели, подключенные к рядам зажимов проверяемой панели, должны быть отсоединены. При наличии испытательных зажимов можно разобрать мостики и перемычки, чтобы был видимый разрыв цепи, отсо­единить все провода, идущие к шинкам управления и сигнализации. Организуется рабочее место, при этом подготавливаются необходимые испытательные устройства, измеритель­ные приборы, инструменты и приспособления, паспорта-протоколы на все устройства, офор­мляется допуск к работе.

При проведении внешнего осмотра обращают внимание на соответствие установленной аппаратуры проекту и заданным уставкам, а также монтажным схемам, выдан­ным проектной организацией и содержащим все данные, необходимые для монтажа (количе­ство и типы реле, расположение их, количество и расположение клеммных сборок и т. д.).

Визуально и прозвонкой цепей проверяется правильность выполнения маркировки кабелей, проводов; место установки и выполнение заземления вторичных цепей; наличие необходимых надписей на панелях и аппаратуре. Проверяются и подтягиваются все кон­такты соединения на рядах зажимов и аппаратов.

При внутреннем осмотре и проверке механической части аппаратуры проверяют отсутствие видимых повреждений, надежность болтовых соединений и паек, состояние контактных поверхностей. Воздействуя рукой на реле, проверяют ход, переме­щение и отсутствие затираний подвижных частей, наличие регламентируемых люфтов, зазоров, прогибов, провалов и т. д.

Например, при ревизии реле РТ-40 необходимо проверить: не задевает ли якорь за по­люса магнитопровода при поворачивании якоря рукой; надежность крепления указателя шкалы; наличие продольного и поперечного люфта в подвижной системе реле; исправность подпятников; состояние и регулировка контактов.

Перед подачей испытательного напряжения производят предварительную проверку сопротивления изоляции отдельных узлов налаживаемого присоединения (пультов, панелей, контрольных кабелей, вторичных обмоток трансформаторов тока и напряжения и т.д.) измерение производят мегаомметром 1000-2500 В между отдельными группами электрически не связанных цепей (тока, напряжения, оперативного тока, сигна­лизации и т. д.) относительно «земли» и между собой. Для обеспечения повышенной на­дежности проверяется сопротивление изоляции между жилами. Сопротивление изоляции должно быть не менее 1,0 МОм.

Следует учесть, что элементы, не рассчитанные на испытательное напряжение 1000 В между электрически не связанными цепями, при измерении сопротивления изоляции исключа­ются из схемы. Для их испытаний используют мегаомметр на 500 В. К ним относятся: магнито­электрические и поляризованные реле; цепи, содержащие микроэлектронные элементы.

Работая с мегаомметром, необходимо соблюдать правила безопасности. Провода, которые присоединяют к его зажимам, должны иметь сопротивление изоляции не менее 100 МОм. Мегаомметр и провода должны быть совершенно сухими и чистыми.

Во время работы на открытой подстанции, в сырых помещениях и в сырую погоду мегаомметр устанавливают на резиновый коврик, сухую доску и т. п., провода не должны касаться сырой земли или заземленных конструкций и аппаратов.

Проверка электрических характеристик и настройка рабо­чих уставок производится в соответствии с требованиями правил технического обслуживания, действующих инструкций, в том числе и заводских, для данного конкретного типа


устройств. Особое внимание уделяется использованию рекомендуемой испытатель­ной аппаратуры и источников ее питания, выбору схем проверки. Постоянный оператив­ный ток подается со строгим соблюдением полярности. Работа по проверке электрических характеристик завершается настройкой заданных уставок, по окончании которой произво­дят сборку всех вторичных цепей данного присоединения подключением жил кабеля и про­водов на рядах зажимов, за исключением цепей связи с устройствами, находящимися в ра­боте (например, цепей трансформаторов тока суммарной МТЗ-27,5 кВ).

Проверка электрических характеристик реле заключается в определении параметров срабатывания и возврата реле, устранении самоходов реле, работающих от двух и более величин, регулировке необходимых параметров срабатывания. Ниже рассматриваются основные работы при проверке электрических характеристик некоторых, наиболее часто встречающихся реле.

В электромагнитных реле тока (напряжения) проверяется величина тока (напряжения) срабатывания и возврата. Проверку реле тока проводят по схеме, приве­денной на рис. 4.45. Увеличивая потенциометром RR2 ток (напряжение), фиксируют вели­чину тока срабатывания (напряжения) по приборам рА (pV) в момент замыкания контак­тов, а затем плавно уменьшают ток (напряжение) и фиксируют его величину в момент раз­мыкания контактов (ток возврата). Индикатором срабатывания реле служит контрольная лампа HL.

Отношение величины тока (напряжения) возврата к величине тока (напряжения) сра­батывания называется коэффициентом возврата и должно быть в пределах 0,85¸0,87 для максимальных и 1,2±1,25 для минимальных реле.


Проверку реле сначала производят по его минимальной и максимальной уставкам (т.е. по первой и последней уставкам на шкале), после чего на него ставят рабочую уставку и снова проверяют коэффициент возврата. Заданную уставку ставят не по делениям шкалы, а по фактическому току срабатывания. Коэффициент возврата регулируется упором под­вижной системы. Установив на реле максимально возможную в условиях эксплуатации ве­личину тока (напряжения), несколько раз включают и отключают его. Если при этом не наблюдается искрения, вибрации и заскакивания подвижных контактов на неподвижные, реле считают годным к эксплуатации.

В реле направления мощности проверяется отсутствие самохода от воздействия (тока или напряжения), угловую характеристику реле и мощность его срабатывания. Самохо­дом называют появление вращающего момента при подаче на реле тока или напряжения. Самоход в сторону заклинивания загрубляет реле, а в сторону замыкания контактов мо­жет вызвать неправильные действия защиты.

Для проверки самохода используют схему, представленную на рис. 4.46. Предвари­тельно отпустив пружину подвижной системы реле и установив ее в среднее положение



Рис. 4.46. Схема проверки самохода реле мощности:

S1, S2 - выключатель; RR1, RR2, RR3-регулируемые резисторы; рА-амперметр; р V-вол ьтметр; S3 - выключатель для шунтиро­вания катушки напряжения; KW1, KW2 - соответственно ка­тушки напряжения и тока реле направления мощности


так, чтобы она не касалась упоров, подают на токовую обмотку реле ток и изменяют его по величине от нуля до максимально возможного в условиях эксплуатации. Обмотку напряже­ния реле закорачивают. Движение подвижной системы в одну или другую сторону в этом случае свидетельствует о наличии самохода, который устраняется поворотом стального сердечника.

Проверку и устранение самохода от напряжения производят аналогично, но токо­вую обмотку реле в этом случае оставляют разомкнутой. Напряжение на обмотке напря­жения изменяют от 0 до 110 В. Обычно он устраняется затяжкой противодействующей пру­жины на угол до 30 °.

После окончания обеих проверок закрепляют стальной сердечник и снова определяют отсутствие самохода.

Угловой характеристикой реле называют зависимость мощности срабатывания реле от взаимного расположения векторов тока и напряжения при I P = const. Угловая характери­стика реле имеет вид диаграммы, представленной на рис. 4.47, на которой линия I-I назы­вается линией нулевых моментов, а перпендикулярная к ней линия II-II - линией макси­мальной чувствительности реле.

Вектор U P характеризует напряжение, поданное на реле, вектор I P - ток реле. При изменении положения вектора тока относительно вектора напряжения меняется вращаю­щий момент реле. При совпадении вектора тока с линией нулевых моментов вращающий момент в реле исчезает. Если вектор тока находится выше линии, то на реле появляется вращающий момент, действующий на замыкание контактов; если вектор тока находится ниже линии I-I, то на реле появляется вращающий момент, действующий на размыкание контактов. Если вектор тока совпадает с линией II-II, то момент, действующий на под­вижную систему, будет максимальным. Угол между вектором напряжения U P и линией II-II называется углом максимальной чувствительности и является постоянной величиной для каждого типа реле.



Рис. 4.48. Схема проверки реле мощности


Для проверки угловой характеристики пользуются схемой, представленной на рис. 4.48. При неизменных величинах тока и напряжения на реле (удобно брать номинальные величи­ны тока и напряжения) с помощью фазорегулятора меняют угол сдвига между током и на­пряжением от 0° до 360° и затем обратно от 360° до 0°. При этом наблюдают и фиксируют значения углов по фазометру, при которых реле замкнет и разомкнет свои контакты соот­ветственно j 1 и j 2. Угол максимальной чувствительности j МЧ, т.е. угол, на который сдви­нута относительно вектора U P линия максимальных моментов в зоне срабатывания реле, определяется либо подсчетом, либо графическим путем, как показано на рис. 4.47.

Проверку чувствительности, которая характеризуется минимальной мощностью сра­батывания реле, производят при номинальном токе и при угле между током и напряжени­ем, равным j МЧ. Чувствительность линейно зависит от угла затяжки возвратной пружины и ее значительные отклонения указывают на механическую неисправность или наличие дефектов в регулировке реле.

Мощность срабатывания определяется как произведение тока реле на напряжение срабатывания и не должна превышать номинальных данных. Уменьшая напряжение до величины, при которой контакты реле размыкаются, определяют мощность возврата, а затем и коэффициент возврата, значение которого должно быть не менее 0,9:

К В =Р В / Р СР,

где Р В и Р СР - соответственно мощности возврата и срабатывания реле, Вт.

Корректировка мощности срабатывания производится изменением угла закручива­ния противодействующей пружины. У реле РБМ-171, например, он равен 120°.

Реле сопротивления. В устройствах защит тяговых подстанций наиболее часто используются направленные реле сопротивления типов КРС-131 и КРС-132.

Проверка направленных реле сопротивления состоит из устранения самохода, про­верки вспомогательных трансформаторов, регулировки уставок и определения зависимос­тей сопротивления срабатывания от угла между током и напряжением и величины тока. При проверке реле необходимо, чтобы частота напряжения, питающего регулировочные и нагрузочные устройства, была в пределах 49,5-50,5 Гц. В противном случае сильно иска­жаются результаты замеров.

Проверка реле на наличие самохода и устранение его производится аналогично реле мощности. После проверки на самоход пружина затягивается на 25-30°.

Проверка трансреакторов заключается в определении ЭДС вторичной обмотки. Первич­ные обмотки трансреактора включают последовательно и через них пропускают ток 5А. Напряжение измеряется вольтметром с большим внутренним сопротивлением.


Минимальное внутреннее сопротивление вольтметра не должно быть менее 1000 Ом на 1 В.

Реле времени. В этих реле проверяют напряжение срабатывания (ЭВ-217-ЭВ-247) и возврата (ЭВ-215-ЭВ-245), а также соответствие времени срабатывания значениям, ука­занным на шкале.

Напряжение срабатывания определяется подачей на катушку реле толчком различно­го по величине напряжения. Минимальное напряжение, при котором сердечник реле втяги­вается, фиксируется как напряжение срабатывания. Максимальное напряжение, при кото­ром сердечник возвращается в исходное положение, называется напряжением возврата.

В промежуточных реле определяют напряжение или ток (в реле, имеющих сериесную катушку) срабатывания и возврата.

В сигнальных реле проверяют ток или напряжение срабатывания.

После окончания проверки характеристик реле вновь собирают все цепи, связываю­щие проверяемое устройство с другими, подключают жилы кабелей к зажимам на панелях шкафов и проверяют изоляцию цепей.

Изоляцию схем вторичной коммутации проверяют вместе со всей аппаратурой; проверку производят в два этапа.

На первом этапе проверки измеряют сопротивление изоляции мегаомметром на 500 В. При этом проверяют отдельно каждую цепь (управления, защиты, сигнализации и т. д.) между токоведущими частями и «землей». Так как в большинстве схем «плюс» и «минус» через обмотки реле, сопротивления, сигнальные лампы и т. д. имеют между собой электри­ческие соединения, подсоединяют вывод мегаомметра только к одному полюсу проверяе­мой цепи. Такие же замеры проводят после испытаний изоляции цепей. Сопротивление изоляции должно быть не менее 1 МОм.

На втором этапе производят испытание изоляции цепей. Испытанию повергается каждая цепь данной схемы, выделенная предохранителями. Испытание произ­водится специальным прибором, схема которого приведена на рис. 4.49. Для этого один вы­вод установки заземляют, а другой подсоединяют к испытуемой цепи и, плавно повышая напряжение до 1 кВ, измеряют ток утечки в течение 1 мин, считая с момента достижения напряжения заданной величины. При пробоях или резких толчках тока утечки электрически разделяют испытываемую схему на более мелкие элементы и повторяют испытание каждого элемента. Последовательно производя такие деления и испытания, определяют и заменяют негодные элементы схемы. Такой метод определения места повреждения практически явля­ется единственным, так как установить место повреждения по звуку пробоя или по разряду удается довольно редко, в отличие от испытаний высоковольтного оборудования.

Элементы и цепи с рабочим напряжением 60 В и ниже при данных проверках исклю­чаются. При испытаниях следует зашунтировать катушки приборов и аппаратов, имею­щих малые номинальные токи (микроамперметры, лампы и т. д.), что предохранит их от повреждения при резком увеличении тока в момент пробоя изоляции.


Проверку взаимодействия элементов устройства РЗА проводят при напряжении оперативного тока, равном 0,8 номинального значения.

Особое внимание обращают на отсутствие обходных цепей; правильность работы устройства при различных положениях накладок, переключателей, испытательных бло­ков, рубильников и др.; отсутствие на рядах зажимов проверяемого устройства сигналов, предназначенных для воздействия на другие устройства, находящиеся в работе.

После того как закончены работы по проверке и регулировке реле, измерительных транс­форматоров и цепей вторичной коммутации, производят проверку взаимодействия реле.

Проверка взаимодействия реле в схеме заключается в опробовании действия каждого реле от руки путем замыкания и размыкания его контактов. При этом коммута­ционные аппараты, на которые действует данная защита, должны быть включены. Таким образом, происходит полная имитация работы защиты.

Одновременно с наблюдением за работой реле ведется наблюдение за работой ава­рийной и предупредительной сигнализации и за четкой работой блинкеров.

Комплексная проверка устройств производится при номинальном напряжении оперативного тока, искусственной подаче на проверяемое устройство пара­метров аварийного режима от постороннего источника, полностью собранных цепях и закрытых кожухах реле. Предусматривается надежное размыкание выходных цепей.

Проверка заключается в измерении полного времени действия каждой из ступе­ней устройства и правильности действия сигнализации. При этом проверяют правиль­ность поведения устройств при имитации всех возможных видов КЗ в зоне и вне зоны действия устройств.

Проверку взаимодействия смонтированного оборудования с другими включенными в работу устройствами защиты, электроавтоматики, управления, сигнализации произво­дят при номинальном напряжении оперативного тока.

Проверку работы всех цепей схемы присоединения при заданных уставках осуществляют прогрузкой первичным током от нагрузочных трансформаторов. Такая проверка дает более надежную гарантию правильности токовых цепей, т.к. в этом случае проверяется исправность самих трансформаторов тока. При этом нагрузочное уст­ройство выбирается на ток, равный или близкий по величине номинальному току трансфор­матора тока проверяемой защиты или, при необходимости, равным току срабатывания за­щиты. Нагрузочное устройство подключается к первичным обмоткам трансформаторов тока (рис. 4.50), а для контроля его тока на выходе через трансформатор тока (ТА) подклю­чается амперметр рА.

При прогрузке цепей, питающихся от трансформаторов тока, соединенных в звезду, ток в цепях защит будет проходить по нулевому проводу (N) и проводу той фазы, к транс­форматору тока которой подключено нагрузочное устройство, а при соединении в треуголь­ник - по двум проводам, связанным с прогружаемой фазой. При прогрузке защиты по вели-




чине тока срабатывания необходи­мо иметь в виду, что ток срабаты­вания защиты, питающейся от ТА, соединенный в треугольник, будет в 1,73 раза больше расчетного. Кро­ме того, при прогрузке защит, пи­тающихся от параллельно соеди­ненных ТА разных фаз, или вклю­ченных в треугольник, создаются параллельные цепи, через которые происходит утечка вторичного тока. При ТА с коэффициентом


трансформации более 100/5 и при ма­лом сопротивлении токовых цепей за­щиты токи утечки лежат в пределах точности замера и не влияют на резуль­тат, но при малых коэффициентах трансформации они могут быть значи­тельны. В этом случае при прогрузке первичным током необходимо исклю­чить влияние трансформаторов других фаз, отключив один из выводов каж­дого трансформатора.

С помощью нагрузочного устрой- Рис. 4.51. Определение неисправности в соединении

ства можно проверить правильность вторичных обмоток трансформаторов тока

подключения ТА. Для этого выводы их

первичных обмоток соединяют после­довательно (рис. 4.51) и, подключая к ним нагрузочное устройство, пропускают через них опре­деленный ток. После чего по величинам токов в фазах токовых цепей защиты и нулевом прово­де судят о правильности или характере неверного соединения вторичных обмоток трансформа­торов тока (табл. 4.16).

Защита ЗЗП-1 (рис. 4.52) применяется как направленная защита нулевой последовательнос­ти для селективного отключения ВЛ ПЭ и ВЛ СЦБ при суммарном емкостном токе замыкания на землю от 0,2 до 20 А. Защита реагирует на ток и напряжение нулевой последовательности.

Проверка и настройка токовой защиты от однофазных за­мыканий на землю ЗЗП проводится по схеме (рис. 4.53). Миллиамперметром рА1 или рА2 определяем ток I ИЗМ 1 . По нему определяем расчетное значение первичного тока ТА2:

I РАСЧ =I ИЗМ 1 · W 1

где W 1 - число витков первичной обмотки ТА2.


Для получения необходимой чувствительности защиты при использовании транзисто­ров с различными коэффициентами усиления сопротивления R11 (см. рис. 4.52) для каждого образца защиты подбираются индивидуально в пределах 2,0-10 кОм. С помощью магази­на сопротивлений подбирают величину резистора, выполняя при этом условия, минималь­ного потребления мощности в цепи переменного тока (3U 0 = 100 В; U пит = 26 В; j = 90°).Токи срабатывания защиты на уставках «1»; «2»; «3» не должны отличаться более чем на 20% от значений, приведенных в табл. 4.17.

Таблица 4.17 Значения токов срабатывания защиты типа 3311-1


Измеряют напряжение срабатывания на всех уставках (U СР. = 25-37 В), время сраба­тывания (t СР ≤ 0,045 с) и зону срабатывания (180° ± 20°). Замеры проводят при 3U 0 =100 В, U ПИТ. = 26 В и j =90°.

Угол максимальной чувствительности определяется по формуле


Перед снятием характеристик размагничивают сердечник ТА2, для чего в первичной обмотке плавно увеличивают ток до 9 А и затем плавно снижают до нуля, повторяя указан­ную операцию 2-3 раза. Перед проверкой следует проверить температуру окружающей среды (она должна быть в пределах 20 ± 5° С) и «прогреть» схему в течение 15 мин под номиналь­ным напряжением питания.

Активное сопротивление соединительных проводов между вторичной обмоткой ТА2 и комплектом защиты не должно превышать 0,3 Ом. Если сопротивление превышает 0,3 Ом, то увеличивают сечение соединительных проводов.

Определяют напряжение на обмотке выходного реле KL при подаче напряжения 3 uq на зажимы 8-10 защиты. Проверка выполняется плавным подъемом напряжения от 0 до 100 В при отсутствии тока в первичной цепи ТА2 и снятом напряжении постоянного тока. Постоянная составляющая напряжения на зажимах 11-13, измеренная вольтметром с R ВН > 1000 Ом/В, не должна превышать +2 В. При больших величинах проверяют на соответствие техническим условиям транзисторы VT3, VT4 и диоды VD3, VD4. Во избежание повреждения транзисто­ров не допускается подача напряжения в цепь 3U 0 более 115 В.

Снятие вольтамперных характеристик I С.З =ƒ(3U 0) при j= 90° и U ПИТ = 24 В произво­дится для трех уставок при новом включении, а при плановой проверке - для рабочей уставки. Уставка ЗЗП-1 зависит от параметров ТА2 и может значительно отличаться от данных на шкале. Реле ЗЗП-1 считается исправным, если его вольтамперные характерис­тики при напряжении 3U 0 = 100 В и 50 В отличаются не более чем на 20 %. Эти же характе­ристики дают возможность убедиться в работоспособности схемы усиления VT3 и VT4 на открывание.

Проверка защиты от замыкания на «землю» в РУ-3, 3 кВ (земляной защиты) проводится путем прогрузки силовой цепи током от сварочного трансформатора, который включают между внутренним и наружным контурами заземления (рис. 4.54). Ток срабатывания определяют по амперметрам рА1 и рА2 для нескольких точек внутреннего контура. Он не должен быть больше 150 А.


может быть повреждена. Совершенно недопустимо вести проверку на нали­чие тока, искусственно разрывая связи с внешним контуром, проходящие через реле за­земления.

Токи уставок проверяют, присоединив к одному из реле оперативные цепи, прогру-жают защиту до срабатывания, пользуясь той же схемой, что и при проверке изоляции контуров. Эту же проверку производят, подключив только второе реле. Величину тока срабатывания фиксируют. Ток уставки каждого реле должен быть 150-200 А.

При периодических осмотрах устройств релейной защиты проверяют состояние аппаратуры и цепей РЗА, клеммных сборок, испытательных блоков, наличие на панелях надписей, указывающих их назначение, а также наличие бирок на кабелях и прово­дах и надписей на них, нагрев блоков питания (для электронных защит), целостность пре­дохранителей.

Не реже одного раза в месяц проводят осмотр РЗА с периодическим опробованием. При этом выполняют:

Контрольные испытания защит с переводом переключателей действия защит на сигнал;

Проверку действия защит от кнопки их контроля (для электронных защит);

Проверку перехода сигнальных точек и устройств СЦБ на резервное питание с предварительным отключением фидера СЦБ на смежной подстанции с АВР (для фидеров СЦБ).

Первый профилактический контроль проводят в течение первого года после включения устройства РЗА в эксплуатацию с целью выявления и устранения приработочных отказов, появляющихся в начальный период эксплуатации. Он состоит из:

Внешнего осмотра;

Измерения и испытания изоляции. Допускается выполнять его мегаомметром на 2500 В вместо испытания напряжением 1000 В переменного тока;

Предварительной проверки заданных уставок, которую проводят (при закрытых
кожухах реле) с целью определения работоспособности элементов и отклонения парамет­ров срабатываний от заданных.

Если при проверке уставок параметры срабатывания выходят за допустимые пределы, производится тщательный анализ причин отклонения и, при необходимости, частичная или полная разборка, восстановление или замена неисправной аппаратуры, ее частей.

При профилактическом восстановлении, помимо проверки электрических характеристик и взаимодействия проверяемого устройства с другими уст­ройствами защиты, электроавтоматики, управления и сигнализации и действия устрой­ства на коммутационную аппаратуру, проводят проверку рабочим током и напряжением. Это проверка работы всех цепей присоединения при заданных уставках прогрузкой пер­вичным током от нагрузочного трансформатора.

Профилактическое восстановление - это периодическое устранение последствий износа и старения заменой или восстановлением его элементов для предотвращения воз­никновений постепенных отказов. Для отдельных элементов устройства, подверженных по тем или иным причинам ускоренному (по сравнении с остальными элементами) износу или старению, в период между профилактическими восстановлениями должно проводить­ся дополнительное частичное восстановление этих элементов.

Частичное профилактическое восстановление отдельных элементов РЗА производят по мере необходимости по результатам проведения профилактического контроля.

Внеочередные и послеаварийные проверки выполняют в объеме профилактического восстановления или проверки при новом включении в зависимости от размеров необходи­мых изменений, повреждений, неисправностей.

Периодичность проведения технического обслуживания устройств приведена в Инст­рукции .

1.1. Правила определяют виды, периодичность, программы и объемы технического обслуживания всех устройств РЗА, трансформаторов тока и напряжения, блоков питания и других узлов устройств РЗА, используемых в электрических сетях 0,4-35 кВ.

1.3. Правилами предусматривается увеличение продолжительности цикла технического обслуживания и сокращение объемов эксплуатационных проверок устройств РЗА в сетях 0,4-35 кВ.

1.4. Методика проверок и испытаний конкретных устройств РЗА приведена в соответствующих инструкциях и методических указаниях, которыми следует пользоваться при проведении технического обслуживания.

2.1.1. Надежностью называется свойство устройства сохранять во времени в установленных пределах значения параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования.

2.1.2. Работоспособным состоянием называется такое состояние устройств, при котором значения параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и конструкторской документации.

Постепенные отказы происходят в результате изменения одного или нескольких параметров устройства или состоя-ния его элементов из-за различных физических и химических процессов, возникающих вследствие продолжительной эксплуатации.

В устройствах РЗА к этим процессам относятся: запыление внутренних деталей реле и устройств, образование нагара и раковин на контактах, разрегулировка механической части реле, ослабление винтовых контактных соединений, снижение сопротивления изоляции, изменение характеристик устройства или его отдельных элементов. При проведении своевременных профилактических мероприятий указанные изменения параметров или состояния устройства и его элементов могут быть обнаружены методами контроля и диагностики, а возможные отказы предотвращены регулировкой, заменой или восстановлением элементов.

Внезапные отказы характеризуются скачкообразным изменением значений одного или нескольких параметров устройства. Причинами внезапных отказов являются физические и химические процессы, протекающие во времени достаточно медленно.

Приработочные отказы происходят в начальный период эксплуатации, вызываются в основном недостатками технологии производства и недостаточным контролем качества комплектующих элементов устройств при изготовлении. Для устройств РЗА причинами приработочных отказов могут быть также ошибки при монтаже и наладке, некачественное проведение наладки.

Отказы периода нормальной эксплуатации происходят после окончания периода приработки, но до наступления периода деградационных отказов. Это наиболее длительный период общего времени эксплуатации, в котором количество отказов примерно постоянно и имеет наименьшее значение.

Деградационные отказы вызываются естественными процессами старения, изнашивания и коррозии при соблюдении установленных правил, норм проектирования, изготовления и эксплуатации. Эти отказы происходят, когда устройство в целом или его отдельные элементы приближаются к предельному состоянию по условиям старения или износа в конце полного или межремонтного срока службы. При правильной организации технического обслуживания эти отказы могут быть предотвращены своевременной заменой или восстановлением элементов. При этом период замены должен быть меньше среднего времени износа элемента. Если своевременная замена не производится, то количество деградационных отказов возрастает.

2.1.4. Приработочные отказы, отказы периода нормальной эксплуатации и деградационные отказы являются случайными событиями, но подчиняются общим закономерностям.

2.1.5. Необходимо различать отказ устройства защиты как событие утраты работоспособности и отказ функционирования как событие невыполнения заданной функции при возникновении соответствующего требования.

2.2.1. Период эксплуатации устройства или срок его службы до списания определяется износом устройства до такого состояния, когда восстановление его становится нерентабельным.

В срок службы устройства, начиная с проверки при новом включении, входит, как правило, несколько межремонтных периодов, каждый из которых может быть подразделен на характерные с точки зрения надежности этапы: период приработки и период нормальной эксплуатации.

2.2.2. Проверку (наладку) устройств РЗА при новом включении следует проводить при вводе в работу вновь смонтированного, отдельного присоединения или при реконструкции устройств РЗА на действующем объекте. Это необходимо для оценки исправности аппаратуры и вторичных цепей, правильности схем соединений, регулировки реле, проверки работоспособности устройств РЗА в целом. Проверка при новом включении должна выполняться персоналом МС РЗА или специализированной наладочной организацией.

Если проверка при новом включении проводилась сторонней наладочной организацией, то включение новых и реконструированных устройств производится после приемки их службой РЗА.

2.2.3. Профилактический контроль устройств РЗА проводится в целях выявления и устранения возникающих в процессе эксплуатации возможных неисправностей его элементов, способных вызвать излишние срабатывания или отказы срабатывания устройств РЗА.

Первый после включения устройства РЗА в эксплуатацию профилактический контроль выполняется главным образом в целях выявления и устранения приработочных отказов, возникающих в начальный период эксплуатации.

В трехфазных электрических сетях возможны повреждения электрооборудования и сложные режимы работы. Повреждения, связанные с нарушением изоляции, разрывом проводов и кабелей линий электропередачи, ошибками персонала при переключениях, приводят к замыканиям фаз между собой и на землю.

В замкнутом контуре появляется большой ток, увеличивается падение напряжения на элементах оборудования, что ведет к общему понижению напряжения во всех точках сети и нарушению работы потребителей.

Для обеспечения нормальных условий работы электрических сетей и предупреждения развития аварий необходимо быстро реагировать на изменение режима работы, незамедлительно отделить поврежденное оборудование от исправного и при необходимости включить резервный источник для питания потребителей. Эти функции выполняют устройства а) б) в) релейной защиты и автоматики. (РЗА).

Рис. Повреждения в электрической сети с заземленной нейтралью А, б, в, - одно -,двух - , трехфазное КЗ соотвеичтвенно.

Релейная защита в случае возникновения аварийного режима отключает поврежденные участки сети и оборудование.

Устройства релейной защиты и автоматики эксплуатируют местные службы релейной защиты, автоматики и телеизмерений. Поэтому оперативный персонал осматривает эти устройства, проверяет их исправность и готовность к действию не реже одного раза в месяц при наличии телесигнализации о неисправности устройств. Если они отсутствуют, осмотры проводят не реже в неделю при обслуживании подстанций ОВБ (оперативные выездные бригады).

При осмотре устройств релейной защиты, автоматики и измерений обслуживающий персонал изучает записи в журнале релейной защиты или картах РЗА о всех работах, выполненных за прошедший после последнего осмотра период, изменения в уставках, схемах, устройствах РЗА, введенных вновь или выведенных из работы, а также записи в оперативном журнале.

После этого проверяет исправность аварийной и предупредительной сигнализации, сигнализации положения выключателей, наличие напряжения на шинах оперативного тока, всех источников постоянного и переменного тока и режим работы подзарядных устройств.

По стационарным приборам контролирует сопротивление изоляции цепей оперативного тока. По сигнализации проверяют исправность цепей управления выключателями и другими коммутационными аппаратами, наличие оперативного тока во всех устройствах и цепях РЗА, управления, исправность предохранителей и АВР источников оперативного тока, правильность положения автоматических выключателей, рубильников и других коммутационных аппаратов в схеме АВР и соответствие их положений первичной схеме. По установленным измерительным приборам контролируют исправность цепей трансформаторов напряжения, предохранителей.

Осматривают все устройства защиты и автоматики на щите управления, релейном щите, в коридорах РУ, КРУ. Возвращают в начальное положение указательные реле, сработавшие от случайных причин (например, от сотрясений). Осматривают и проверяют готовность к действию фиксирующих приборов.

Обо всех неисправностях, выявленных при осмотре, делают записи в релейном журнале и немедленно докладывают диспетчеру ПЭС и руководству местной службы РЗА.

Оперативный персонал может самостоятельно устранить некоторые неисправности, к ним относятся:

Все работы в устройствах РЗА, как правило, выполняет персонал релейной службы РЗАИ по заранее оформленным заявкам.

Подготовительные работы. Подбираются полный комплект проектной и заводской документации, необходимых инструкций и программ испытаний, утвержденные уставки для настройки устройств защиты и электроавтоматики (их получают в соответствующих службах эксплуатации). По выверенным принципиальным схемам проверяются монтажные схемы панелей и пультов, ряды зажимов, кабельные журналы и т. п. При анализе принципиальных схем проверяется возможность настройки заданных уставок на проектных устройствах, выявляются реле, подлежащие замене.

Организуется рабочее место, при этом подготавливаются необходимые испытательные устройства, измерительные приборы, инструменты и приспособления, паспорта-протоколы на все устройства налаживаемого присоединения, оформляется допуск к работе.

Чтобы ошибочно не подать напряжение на соседние панели и устройства, все кабели, подключенные к рядам зажимов проверяемой панели, должны быть отсоединены.

Внешний и внутренний осмотр. Проверяется соответствие установленной аппаратуры проекту и заданным уставкам.

Визуально и прозвонкой цепей проверяется правильность выполнения маркировки кабелей, жил кабелей, проводов; место установки и выполнение заземления вторичных цепей; наличие необходимых надписей на панелях и аппаратуре, выполняемых как правило, силами эксплуатационного персонала.

На налаживаемом устройстве (панели, щите, пульте) проверяется соответствие выполнения внешнего монтажа принципиальным и монтажным схемам, покачиванием и подергиванием пинцетом за провод контролируется надежность паек, подтягиваются все контактные соединения на рядах зажимов и у аппаратов. Проверку правильности монтажа на серийных типовых панелях, как правило, не производят.

При внутреннем осмотре и проверке механической части аппаратуры проверяют отсутствие видимых повреждений, надежность болтовых соединений и паек, состояние контактных поверхностей. Воздействуя рукой на реле, проверяют ход, перемещение и отсутствие затираний подвижных частей, наличие регламентируемых люфтов, зазоров, прогибов, провалов и т. д.

Предварительная проверка сопротивления изоляции проводится для контроля сопротивления изоляции отдельных узлов налаживаемого присоединения (пультов, панелей, контрольных кабелей, вторичных обмоток трансформаторов тока и напряжения и т. д.) перед подачей на них испытательного напряжения от проверочных устройств. Измерение производят мегаомметром на 1000--2500 В между отдельными группами электрически не связанных цепей (тока, напряжения, оперативного тока, сигнализации и т. д.) относительно земли и между собой. Для обеспечения повышенной надежности проверяется сопротивление изоляции между жилами кабеля газовой защиты и между жилами кабеля от трансформаторов напряжения до шкафа, где установлены защитные элементы -- автоматические выключатели или предохранители. Аппаратура, не рассчитанная на испытательное напряжение 1000 В (например, магнитоэлектрические и поляризованные реле), исключается при проверках из схемы и испытывается в соответствии с заводскими нормами.

Проверка электрических характеристик и настройка заданных рабочих установок производится в соответствии с требованиями правил технического обслуживания, действующих инструкций, в том числе и заводских, для данного конкретного типа устройств.

Работа по проверке электрических характеристик завершается настройкой заданных уставок, по окончании которой производят сборку всех вторичных цепей данного присоединения подключением жил кабеля на рядах зажимов, за исключением цепей связи с устройствами, находящимися в работе.

Измерение и испытание изоляции производится в полностью собранной схеме при установленных и закрытых кожухах, крышках, реле, дверцах и т. д. каждой группы электрически не связанных вторичных цепей. Электрическая прочность изоляции испытывается напряжением 1000 В переменного тока в течение 1 мин относительно земли. До и после подачи переменного испытательного напряжения мегаомметром 1000--2500 В измеряют сопротивление изоляции испытуемых цепей. Элементы и цепи с рабочим напряжением 60 В и ниже при данных проверках исключаются.

Проверка взаимодействия элементов устройства. При напряжении оперативного тока, равном 0,8 , проверяется правильность взаимодействия реле защиты, электроавтоматики, управления и сигнализации. Проверка взаимодействия производится в соответствии с принципиальной схемой, замыканием и размыканием вручную цепей контактов реле, при этом проверяется отсутствие обходных цепей, правильность работы схемы при переключении накладок, рубильников, испытательных блоков и т. д. На рядах зажимов проверяемого устройства контролируется наличие и отсутствие сигналов, предназначенных для воздействия на устройства, находящиеся в работе.

Комплексная проверка производится по согласованной и утвержденной программе имитацией различных аварийных режимов при номинальном напряжении оперативного тока, подаваемого по проектной схеме со щита постоянного тока. От проверочного устройства на испытуемое присоединение для этого подаются различные сочетания токов и напряжений, которые соответствуют параметрам аварийных режимов (данная проверка производится при закрытых крышках реле).

При имитации каждого режима измеряется время действия каждой из ступеней защиты на контактах выходных реле, проверяется правильность действия блокировок и сигнализации. Для исключения многократного воздействия на выключатели, разъединители, клапаны, задвижки и т. д. необходимо предусмотреть надежный вывод из работы выходных цепей защиты. После проверок в различных режимах восстанавливаются все связи с другими аппаратами и устройствами (особенно внимательно подключается аппаратура, находящаяся в работе). Комплексная проверка завершается опробованием действия на коммутационную аппаратуру и контролем взаимодействия с устройствами других присоединений.

Результаты проверки оформляются соответствующей записью в журнале релейной защиты, после чего работы в оперативных цепях данного присоединения без специального допуска производиться не могут.

Подготовка устройства к включению в работу. Перед включением производится повторный осмотр панелей, рядов зажимов, контролируется положение соединительных мостиков и перемычек, положение накладок в цепях отключения, отсутствие отсоединенных и неизолированных проводов и жил кабелей, наличие заземления в соответствующих цепях.

При новом включении оборудования все защиты, в том числе и не проверенные рабочим током, вводятся в работу с действием на отключение, сразу после включения производится проверка устройств под нагрузкой совместно наладочным персоналом и специалистами местных служб, в том числе оперативным персоналом. Данная проверка устройства под нагрузкой рабочим током и напряжением является окончательной, подтверждающей правильность включения и поведения отдельных реле и устройства в целом. При проверке рабочим током и напряжением сначала проверяется правильность выполнения цепей напряжения, а затем снятием векторной диаграммы токов и оценкой ее по фактическому направлению мощности в первичной сети проверяется правильность выполнения токовых цепей. Для контроля целостности нулевого провода обязательно измеряется в нем ток небаланса, созданием соответствующих режимов контролируется протекание через нулевой провод фазного тока.

После завершения проверки под нагрузкой тщательно осматривают и восстанавливают перемычки на всех реле, режим которых изменился при проверке их рабочим током. В журнале релейной защиты делается соответствующая запись о состоянии проверенных устройств и о возможности включения их в работу.

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ
И
ЭЛЕКТРИФИКАЦИИ « ЕЭС РОССИИ »

ПРАВИЛА
ТЕХНИЧЕСКОГО
ОБСЛУЖИВАНИЯ
УСТРОЙСТВ
РЕЛЕЙНОЙ ЗАЩИТЫ ,
ЭЛЕКТРОАВТОМАТИКИ ,
ДИСТАНЦИОННОГО УПРАВЛЕНИЯ
И
СИГНАЛИЗАЦИИ ЭЛЕКТРОСТАНЦИЙ
И
ПОДСТАНЦИЙ 110 - 750 кВ

РД 153-34.0-35.617-2001

3- е издание ,
переработанное и дополненное

СЛУЖБА ПЕРЕДОВОГО ОПЫТА ОРГРЭС

Москва 2001

Разработано Открытым акционерным обществом «Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС»

Исполнители В.А. БОРУХМАН, В.С. ГОНЧАРОВА, А.В. ГРИГОРЬЕВ, Н.П. САНТУРЯН

Утверждено Департаментом научно-технической политики и развития РАО «ЕЭС России» 20.01.2001 г.

Первый заместитель начальника А.П. ЛИВИНСКИЙ

ПРАВИЛА ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ
УСТРОЙСТВ
РЕЛЕЙНОЙ ЗАЩИТЫ , ЭЛЕКТРОАВТОМАТИКИ
ДИСТАНЦИОННОГО
УПРАВЛЕНИЯ И СИГНАЛИЗАЦИИ
ЭЛЕКТРОСТАНЦИЙ
И ПОДСТАНЦИЙ 110 - 750 кВ

РД 153-34.0-35.617-2001

Вводится в действие

с 01.03.2001 г.

Настоящие Правила обязательны для работников, занимающихся наладкой и эксплуатацией устройств релейной защиты и электроавтоматики (РЗА) на предприятиях Межсистемных электрических сетей (МЭС) и АО-энерго, на электростанциях РАО «ЕЭС России».

Правила определяют виды, периодичность, программы и объемы технического обслуживания устройств РЗА, дистанционного управления и сигнализации (далее - устройств РЗА), высокочастотных каналов релейной защиты, трансформаторов тока и напряжения.

При составлении настоящих Правил были использованы «Правила технического обслуживания устройств релейной защиты, электроавтоматики, дистанционного управления и сигнализации электростанций и подстанций 110 - 750 кВ: РД 34.35.617-89», а также предложения и материалы ряда энергосистем, электростанций, предприятий электрических сетей, организаций-разработчиков и изготовителей устройств РЗА.

С выходом настоящих Правил «Правила технического обслуживания устройств релейной защиты, электроавтоматики, дистанционного управления и сигнализации электростанций и подстанций 110 - 750 кВ: РД 34.35.617-89» (М.: СПО Союзтехэнерго, 1989) считаются утратившими силу.

1 . ОБЩИЕ ПОЛОЖЕНИЯ

1.1 . Настоящие Правила обязательны для работников, занимающихся наладкой и эксплуатацией устройств релейной защиты и электроавтоматики (РЗА) на предприятиях Межсистемных электрических сетей (МЭС) и АО-энерго, на электростанциях РАО «ЕЭС России».

1.2 . Правила определяют виды, периодичность и программы технического обслуживания устройств РЗА, дистанционного управления и сигнализации (далее - устройств РЗА), а также объемы технического обслуживания типовых панелей, шкафов, комплектов, блоков и аппаратов устройств РЗА, высокочастотных каналов релейной защиты, трансформаторов тока и напряжения.

1.3 . Методики проверок и испытаний устройств и аппаратов приведены в методических указаниях и инструкциях, которыми следует пользоваться при проведении технического обслуживания (приложение ).

2 . СИСТЕМА ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ УСТРОЙСТВ РЗА

2.1 . Основные понятия и термины в области надежности РЗА

2.1.1 . Надежностью называется свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования.

2.1.2 . Работоспособным состоянием называется такое состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.

2.1.3 . Отказом называется событие, заключающееся в нарушении работоспособного состояния объекта.

Если отказы полностью отсутствуют, то объект обладает стопроцентной надежностью. Однако любой реальный объект независимо от принятой системы технического обслуживания подвержен отказам.

Целесообразно выделить следующие характерные виды отказов объекта, разделив их на две группы:

по возможности прогнозировать наступление отказа - постепенные отказы и внезапные отказы;

по времени возникновения отказа - приработочные отказы, отказы периода нормальной эксплуатации и деградационные отказы.

При этом отказы второй группы могут носить как постепенный, так и внезапный характер.

Постепенные отказы возникают в результате постепенного изменения одного или нескольких параметров объекта или состояния его элементов из-за протекания различных механических, физических и химических процессов с течением времени эксплуатации.

В устройствах РЗА к этим процессам относятся: запыление внутренних деталей реле, образование нагара и раковин на контактах, разрегулировка механической части реле, ослабление винтовых контактных соединений, снижение сопротивления изоляции, уход характеристик устройства или его отдельных узлов и элементов и т.п. При проведении своевременных профилактических мероприятий указанные изменения параметров или состояния устройства и его элементов могут быть обнаружены принятыми методами контроля и диагностики, а возможные отказы предотвращены регулировкой, заменой или восстановлением элементов.

Внезапные отказы характеризуются скачкообразным изменением значений одного или нескольких параметров объекта. Причинами внезапных отказов могут являться скрытые дефекты, а также механические, физические и химические процессы, которые могут протекать во времени достаточно медленно, но в отличие от постепенных отказов наступление внезапного отказа не может быть предсказано принятыми методами контроля и диагностики.

Характерной причиной такого отказа может быть, например, снижение сопротивления межвитковой изоляции обмотки реле.

Приработочные отказы , происходящие в начальный период эксплуатации, вызываются в основном недостатками технологии производства и недостаточным контролем качества комплектующих изделий и объектов в целом при их изготовлении. Для устройств РЗА причинами приработочных отказов могут быть также ошибки при монтаже и наладке, некачественное проведение наладки и т.п.

Приработочные отказы для аппаратуры непрерывного действия обычно устраняются в процессе приработки, т.е. работы аппаратуры в течение определенного времени в условиях, близких к эксплуатационным. Для устройств, действующих достаточно редко, к которым относятся и устройства РЗА, период приработки может быть длительным. По мере выявления и устранения дефектных элементов количество приработочных отказов в единицу времени уменьшается.

Отказы периода нормальной эксплуатации происходят после окончания периода приработки, но до наступления периода деградационных отказов. Это наиболее длительный период общего времени эксплуатации, в котором количество отказов в единицу времени практически постоянно и имеет наименьшее значение.

Деградационные отказы вызываются естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и норм проектирования, изготовления и эксплуатации. Эти отказы происходят, когда объект в целом или его отдельные элементы приближаются к предельному состоянию по условиям старения или износа в конце полного или межремонтного срока службы. При правильной организации технического обслуживания эти отказы в основном могут быть предотвращены своевременной заменой или восстановлением элементов. При этом период замены (восстановления) должен быть меньше среднего времени старения (износа) элемента. Если своевременная замена (восстановление) не производится, то количество деградационных отказов в единицу времени начинает нарастать.

Потеря работоспособности устройств может произойти и из-за ошибок персонала при их техническом или оперативном обслуживании, а также быть следствием воздействия внешних факторов, значение которых выходит за пределы, установленные нормативно-технической документацией, или непредусмотренного этой документацией одновременного воздействия нескольких внешних факторов, значение каждого из которых не выходит за установленные пределы. При этом потеря работоспособности может иметь характер как внезапного, так и постепенного отказа в любой период эксплуатации.

2.1.4 . Приработочные отказы , отказы периода нормальной эксплуатации и деградационные отказы являются случайными событиями, но подчиняются различным общим закономерностям случайных событий.

Последовательность случайных событий во времени называется потоком событий . Поэтому последовательность отказов называется потоком отказов . Одной из характеристик потока отказов для ремонтируемых изделий, к которым относятся и устройства релейной защиты, является параметр потока отказов - вероятное количество отказов в единицу времени.

В начальный период эксплуатации, в период приработки , параметр потока отказов уменьшается по мере выявления и устранения дефектов.

После окончания периода приработки начинается период нормальной эксплуатации , в котором параметр потока отказов является практически постоянным. За периодом нормальной эксплуатации наступает период деградации (старения и износа), в котором параметр потока отказов начинает возрастать.

Приработочные отказы устраняются в период приработки путем замены отказавших элементов и устранения выявленных неисправностей.

Для предотвращения деградационных отказов необходима своевременная профилактическая замена (восстановление) элемента, даже если он не отказал, в конце периода нормальной эксплуатации.

Внезапные отказы в общем случае не могут быть предотвращены заменой элементов в период нормальной эксплуатации. Наоборот, замена исправных элементов может увели чить параметр потока отказов за счет появления приработочных отказов у вновь установленных элементов. Следует отметить, что ряд изложенных ниже особенностей релейной защиты с точки зрения надежности определяет специфический подход к профилактике внезапных отказов устройств релейной защиты.

2.1.5 . Устройства релейной защиты (в отличие от устройств непрерывного действия) могут быть отнесены к устройствам со статической готовностью к действию. Релейная защита выполняет свои функции по требованию, которым является короткое замыкание или иное нарушение нормального режима защищаемого оборудования. Поэтому необходимо различать отказ устройства защиты как событие утраты работоспособности и отказ функционирования как событие невыполнения заданной функции при возникновении соответствующего требования. Отказ устройства происходит, как правило, не одновременно с возникновением требования к функционированию и, следовательно, отказ функционирования может быть предотвращен, если в интервале между моментом возникновения отказа и моментом возникновения требования проведены профилактические работы. Поэтому поток отказов функционирования зависит не только от потока отказов устройства, но и от организации технического обслуживания, а также от качества его проведения.

Кроме того, поскольку отказ устройства может превратиться в отказ функционирования лишь при возникновении требования к функционированию, поток отказов функционирования зависит и от потока требований к функционированию.

2.2 . Виды технического обслуживания устройств РЗА

2.2.1 . Период эксплуатации или срок службы устройства до списания определяется моральным либо физическим износом устройства до такого состояния, когда восстановление его становится нерентабельным. В срок службы устройства, начиная с проверки при новом включении, входит, как правило, несколько межремонтных периодов, каждый из которых может быть разбит на характерные с точки зрения надежности этапы: период приработки, период нормальной эксплуатации и период износа.

Устанавливаются следующие виды планового технического обслуживания устройств РЗА:

проверка при новом включении (наладка);

первый профилактический контроль;

профилактический контроль;

профилактическое восстановление (ремонт);

тестовый контроль;

опробование ;

технический осмотр.

Кроме того, в процессе эксплуатации могут проводиться следующие виды внепланового технического обслуживания:

внеочередная проверка;

послеаварийная проверка.

2.2.2 . Проверки при новом включении устройств РЗА, в том числе вторичных цепей, измерительных трансформаторов и элементов приводов коммутационных аппаратов, относящихся к устройствам РЗА, проводятся:

перед включением вновь смонтированных устройств;

после реконструкции действующих устройств, связанной с установкой новой дополнительной аппаратуры, переделкой находящейся в работе аппаратуры, или после монтажа новых вторичных цепей.

Если проверка при новом включении проводилась сторонней наладочной организацией, включение новых и реконструированных устройств без приемки их службой РЗАИ запрещается.

2.2.3 . Задачей технического обслуживания в период приработки с учетом особенностей релейной защиты является как можно более быстрое выявление приработочных отказов и предотвращение отказов функционирования по этой причине.

Для устройств РЗА приработочные отказы наиболее характерны в начальный период эксплуатации. В остальные межремонтные периоды они возникают значительно реже.

Период приработки устройства релейной защиты начинается с проведения наладочных работ перед включением устройства в эксплуатацию, которые при тщательном их выполнении обеспечивают выявление и устранение большей части приработочных отказов. Однако всегда имеется вероятность, что какие-то дефекты не будут обнаружены или появятся после проведения наладки. Кроме того, при наладке могут не проявиться скрытые дефекты элементов, которые выявятся спустя некоторое время после ввода устройства в эксплуатацию. К ним могут быть отнесены, например, ослабленная межвитковая изоляция обмоток реле и трансформаторов, наличие надломов в проволочных сопротивлениях, скрытые дефекты в радиоэлектронной аппаратуре.

Таким образом, с окончанием наладочных работ и вводом устройства в эксплуатацию период приработки не может считаться законченным. Необходимо проведение через некоторое время после наладки еще одной проверки, после которой с достаточно большой вероятностью можно считать, что приработочные отказы выявлены и устранены. Такая проверка названа первым профилактическим контролем. Срок проведения этого контроля определяется в основном двумя противоречивыми факторами. С одной стороны, необходимо некоторое время для проявления скрытых дефектов и, следовательно, чем больше это время, тем вероятнее их проявление. С другой стороны, с увеличением интервала между включением устройства в эксплуатацию и первым профилактическим контролем увеличивается вероятность отказа функционирования устройства.

2.2.4 . Задачей технического обслуживания в период деградации является своевременное профилактическое восстановление или замена изношенных элементов устройства с тем, чтобы предотвратить резкое возрастание параметра потока отказов. Соответствующий вид технического обслуживания с учетом ремонтопригодности подавляющего большинства элементов устройств релейной защиты назван профилактическим восстановлением.

Периодичность профилактического восстановления устройства определяется периодичностью восстановления его элементов, которая в свою очередь определяется ресурсом этих элементов. Ресурс различных элементов неодинаков, однако, учитывая специфику условий эксплуатации устройств РЗА, приходится совмещать сроки профилактических восстановлений разных элементов, подверженных различным по скорости процессам старения (износа).

Периодичность профилактического восстановления устройства РЗА целесообразно определять ресурсом большей части аппаратуры и элементов этого устройства.

Для быстроизнашивающихся электромеханических реле (имеющих малый ресурс) восстановление проводится также и при проведении очередного профилактического контроля. Перечень аппаратуры, имеющей пониженный ресурс, приведен в примечании 2 к таблице (см. п. ).

2.2.5 . Задачей технического обслуживания в период нормальной эксплуатации, т.е. между двумя восстановлениями, является выявление и устранение возникших отказов и изменений параметров устройства с целью предотвращения возможных отказов функционирования. Соответствующие виды технического обслуживания называются профилактическим контролем и тестовым контролем.

Профилактический контроль заключается в проверке работоспособности всего устройства РЗА.

Тестовый контроль как дополнительный вид технического обслуживания применяется для микроэлектронных и микропроцессорных устройств, имеющих соответствующие встроенные средства. При тестовом контроле осуществляется, как правило, проверка работоспособности части устройства.

Периодичность профилактического и тестового контроля определяется рядом факторов:

параметром потока отказов;

параметром потока требований к функционированию;

ущербом от отказа функционирования устройства РЗА;

затратами на проведение профилактического контроля;

вероятностью ошибок персонала в процессе проведения профилактического контроля.

Кроме профилактического контроля, в период нормальной эксплуатации предусмотрено при необходимости проведение периодических опробований (см. п. ).

Назначением периодических опробований является дополнительная проверка работоспособности наименее надежных элементов устройств РЗА: реле времени с часовым механизмом, технологических датчиков, приводов коммутационных аппаратов (исполнительных механизмов).

2.2.6 . При частичном изменении схем или реконструкции устройств РЗА, при восстановлении цепей, нарушенных в связи с ремонтом другого оборудования, при необходимости изменения уставок или характеристик реле и устройств проводятся внеочередные проверки .

Послеаварийные проверки проводятся для выяснения причин отказов функционирования или неясных действий устройств РЗА.

Периодически должны проводиться внешние технические осмотры аппаратуры и вторичных цепей, проверка положения переключающих устройств и испытательных блоков.

2.3 . Периодичность технического обслуживания устройств РЗА

2.3.1 . Все устройства РЗА, включая вторичные цепи, измерительные трансформаторы и элементы приводов коммутационных аппаратов, относящиеся к устройствам РЗА, должны периодически подвергаться техническому обслуживанию.

В зависимости от типа устройств РЗА и условий их эксплуатации в части воздействия различных факторов внешней среды цикл технического обслуживания установлен от трех до восьми лет.

Под циклом технического обслуживания понимается период эксплуатации устройств между двумя ближайшими профилактическими восстановлениями, в течение которого выполняются в определенной последовательности установленные виды технического обслуживания, предусмотренные настоящими Правилами.

2.3.2 . Для устройств РЗА подстанций 110 - 750 кВ, в том числе повысительных подстанций электростанций, цикл технического обслуживания принят равным восьми годам для устройств на электромеханической элементной базе и шести годам - на микроэлектронной и микропроцессорной базе 1 .

1 К устройствам на микроэлектронной базе отнесены устройства, измерительная и логическая части которых в основном или полностью выполнены на интегральных микросхемах.

2.3.3 . Для устройств РЗА электрических станций цикл технического обслуживания зависит от категорий помещений, в которых они установлены.

К I категории относятся сухие отапливаемые помещения с наличием незначительной вибрации и запыленности, в которых отсутствуют ударные воздействия (ГЩУ, БЩУ, релейные щиты).

Помещения II категории характеризуются большим диапазоном колебаний температуры окружающего воздуха, незначительной вибрацией, наличием одиночных ударов, возможностью существенного запыления (панели РУСН 0,4 кВ, релейные отсеки КРУ 6 кВ).

Помещения III категории характеризуются наличием постоянной большой вибрации (камера АГП, зоны вблизи вращающихся машин).

Цикл технического обслуживания устройств РЗА в зависимости от категории помещения, где установлено устройство, принят равным соответственно восьми, шести и трем годам.

Цикл технического обслуживания расцепителей автоматических выключателей всех типов принят равным шести годам.

Для неответственных присоединений напряжением 0,4 - 6 кВ электростанций продолжительность цикла технического обслуживания устройств дистанционного управления и сигнализации может быть увеличена вдвое по сравнению с продолжительностью цикла технического обслуживания устройств РЗА этих присоединений (но не более чем до восьми лет).

2.3.4 . Установленная в пп. и продолжительность цикла технического обслуживания устройств РЗА решением главного инженера предприятия может быть увеличена или сокращена в зависимости от конкретных условий эксплуатации, длительности эксплуатации с момента ввода в работу, фактического состояния каждого конкретного устройства, а также квалификации обслуживающего персонала МС РЗАИ. Для устройств РЗА главной схемы электростанций, оборудования и линий электропередачи подстанций, находящихся в ведении или управлении диспетчера энергосистемы, это решение должно быть согласовано со службой РЗА АО-энерго, для остальных устройств РЗА такое согласование не требуется.

2.3.5 . Допускается с целью совмещения проведения технического обслуживания устройств РЗА с ремонтом основного оборудования перенос запланированного вида технического обслуживания на срок до двух лет.

2.3.6 . При трехлетней продолжительности цикла технического обслуживания профилактический контроль между профилактическими восстановлениями, как правило, не должен проводиться.

2.3.7 . Первый профилактический контроль устройств РЗА, дистанционного управления и сигнализации должен проводиться через 10 - 15 мес. после включения устройства в эксплуатацию. Для устройств РЗА энергоблоков проведение первого профилактического контроля совмещается с первым капитальным ремонтом оборудования.

2.3.8 . Для таких устройств вторичных соединений, как дистанционное управление, сигнализация, блокировка, проводятся только профилактические восстановления, опробования и осмотры с периодичностью, установленной для соответствующих устройств РЗА.

2.3.9 . Тестовый контроль для устройств на микроэлектронной базе должен проводиться не реже одного раза в 12 мес.

2.3.10 . Для устройств РЗА на микроэлектронной базе встроенными средствами тестового контроля, как правило, должна предусматриваться тренировка перед первым включением в эксплуатацию. Тренировка заключается в подаче на устройство на 3 - 5 сут. оперативного тока и при возможности рабочих токов и напряжений; устройство при этом должно быть включено с действием на сигнал. По истечении срока тренировки следует произвести тестовый контроль устройства, и при отсутствии каких-либо неисправностей устройство РЗА перевести на отключение.

При невозможности проведения тренировки первый тестовый контроль должен быть проведен в срок до двух недель после ввода в эксплуатацию.

2.3.11 . Периодичность технических осмотров аппаратуры и вторичных цепей устанавливается МС РЗАИ в соответствии с местными условиями, но не реже двух раз в год.

2.3.12 . Опробование устройств АВР механизмов СН ТЭС должно проводиться оперативным персоналом не реже одного раза в шесть месяцев, а устройств АВР вводов питания СН - не реже одного раза в год. Опробование устройств АПВ линий электропередачи должно проводиться не реже одного раза в год.

Необходимость и периодичность проведения опробований других устройств РЗА определяются местными условиями и утверждаются решением главного инженера предприятия.

Правильная работа устройств в трехмесячный период до намеченного срока может быть засчитана за проведение очередного опробования.

2.3.13 . Периодичность проведения предусмотренных настоящими Правилами видов технического обслуживания приведена в таблице.

Указанные в таблице циклы технического обслуживания относятся к периоду эксплуатации устройств РЗА в пределах полного срока службы. Техническими условиями на устройства РЗА на электромеханической и микроэлектронной базе средний полный срок службы установлен равным 12 годам.

По опыту эксплуатации фактический срок службы устройств РЗА на электромеханической элементной базе при нормальных условиях эксплуатации и проведении установленного технического обслуживания составляет не менее 25 лет. По микроэлектронным устройствам такого опыта пока нет.

Эксплуатация устройств РЗА сверх установленных сроков службы возможна при удовлетворительном состоянии аппаратуры и соединительных проводов этих устройств и при необходимости сокращении цикла технического обслуживания (см. п. ).