Описания проверки металлов на прочность. Механические испытания металлов. Прочность, определение прочности металла. Твердость по Бринеллю определяется по формуле

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление к разрушению (пластичность, вязкость) а так же способность металла не разрушаться при наличии трещин.

В результате механических испытаний получают числовые значения механических свойств, т.е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

При оценке механических свойств металлических материалов различают несколько групп их критериев.

1. Критерии, определяемые независимо от конструктивных особенностей и характера служб изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамическое испытание).

2. Критерий оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризует работоспособность материала в условиях эксплуатации. Критерий конструктивной прочности металлических материалов можно разделить на две группы:

Критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость, разрушения, работа, поглощаемая при распространении трещин, живучесть и др.)

Критерии, определяющие долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т.д.)

3. Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натуральных и эксплуатационных испытаниях.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

7. Методы испытаний

7.1. Испытания на растяжение. Для данного испытания применяется образец цилиндрической формы с утолщениями по краям (рис. 6).

Рис. 6. Образцы для испытания на растяжение

Образец укрепляется в захваты испытательной машины и подвергается растяжению. В современных машинах скорость растяжения может изменяться в широких пределах от 0,003-3000 мм/мин. Испытательные машины оснащены устройством, регистрирующим результат испытания – кривую деформации (рис. 7). По результатам испытаний на растяжение определяются характеристики прочности и пластичности.

Приложение к металлу напряжений вызывает деформацию. Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки. На приведенной диаграмме (рис. 7а), упругая деформация характеризуется линией ОА и ее продолжением (штриховая линия).

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и остаточную пластическую деформацию. Величина ее равна горизонтальному отрезку от штриховой линии до сплошной кривой.

При упругом деформировании под воздействием внешних сил изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменения межатомного расстояния, атомы становятся на прежние места и деформация исчезает

При пластическом деформировании одна часть кристалла перемещается по отношению к другой. При снятии нагрузки перемещенная часть кристалла не возвратится на старое место деформация сохраниться.

Представленная на рис. 7а зависимость ОАВ между приложенным извне напряжением (s) и вызванной им относительной деформацией (e) характеризует относительные свойства металлов. Наклон прямой ОА показывает жесткость металла, тангенс угла наклона пропорционален модулю упругости (Е), напряжение s А соответствует моменту появления пластической деформации, в технических измерениях принята характеристика, именуемая пределом текучестиs 0,2 (напряжение вызывающее остаточную деформацию, равную 0,2% от длины или другого размера образца). Максимальное напряжение s в соответствует максимальному напряжению, достигнутому при растяжении называется пределом прочности.

Рис. 7. Изменение деформации в зависимости от напряжения

Величина пластической деформации, предшествующая разрушению и определяемая как относительное изменение длины (или поперечного сечения) – так называемое относительное удлинение d (или относительное сужение y), характеризуют пластичность металла.

Относительное удлинение: d = (l к - l 0) 100/ l 0

Относительно сужение: y = (F 0 - F к) 100/ F 0

где l 0 и l к - длина образца, а F 0 и F к площадь поперечного сечения образца до и после разрушения соответственно.

Характеристики материалов s 0,2 , s B , d, y, а также E являются базовыми - они включаются в ГОСТ на поставку конструкционных материалов, в паспорта приемочных испытаний, а также входит в расчеты прочности и ресурса.

7.2. Испытание на изгиб. Для хрупких материалов широко применяются испытания на изгиб. Чаще испытания проводят сосредоточенной нагрузкой на образце, лежащей на двух опорах. Предел прочности при изгибе s изг (s max) вычисляют по формуле:

s изг (s max) = М max / w,

где М max - максимально изгибающий момент, w – площадь поперечного сечения образца.

7.3. Испытания на удар. Под ударной вязкостью понимается способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки. Обычно ударная вязкость оценивается работой, необходимой для деформации и разрушения призматического образца с односторонним поперечным надрезом при испытании на ударный изгиб, условно отнесённой к сечению образца в основании надреза (дж/м 2 , нм/м 2 , кгс×м/см 2); обозначается символом а н.

Разрушение образца, расположенного на двух опорах, осуществляют ударом маятника копра (рис. 8 а).

Рис. 8. Схема маятника копра (а) и виды образцов (б) для испытаний на удар

Испытания проводят с использованием одного из видов образцов, приведенных на рис. 8 б, которые при одинаковом сечении (10х10 мм) имеют надрезы глубиной 2 мм, т.о. в месте разрушения сечение нетто 8х10 мм. В последнем случае надрез глубиной в 1 мм делается механически, а затем создается усталостная трещина глубиной также 1 мм. Надрезы выполняются с разной остротой r = 1мм (U – образный надрез) и r = 0,25 мм (V – образный надрез).

Работа по разрушению образца А н складывается из двух составляющих - работы зарождения трещины (А з) и работы по распространению трещины (А р), т.е. А н = А з + А р.

Под работой по зарождению трещины понимают работу, затраченную на макродеформацию образца до зарождения на дне надреза трещины. Величина А з для данного пропорциональна деформируемому объему металла, а последнее пропорционально остроте надреза.

В связи с этим, испытывая образцы с разной остротой надреза полученные данные нанесем на график в координатах а-r и проведем прямую, проходящую через эти две точки, до пресечения с осью ординат (рис. 9).

Рис. 9. График для определения работы трещины методом экстраполяции

Экстраполируя, таким образом, значения радиуса надреза на нуль, получим ударную вязкость образца с надрезом равным нулю т.е. работу по распространению трещины А р.

Работу по распространению трещины можно получить другим методом - прямым испытанием образцов с заранее нанесенной трещиной (третий вариант подготовки образцов для испытания на удар (рис. 8б). Очевидно, что при испытании такого образца получаемая ударная вязкость равна работе распространения, т.к. трещина готова и А з = 0, то А н = А р.

Надежным конструкционным материалом считается такой, в котором работа по распространению трещины равна нулю.

В результате испытаний образцов с надрезом на маятниковых копрах кроме определения полной работы А н, затраченной на деформацию и разрушение образца данного типа, рассчитывается также удельная работа на единицу площади КС = А н /S o , где S o – площадь поперечного сечения нетто образцов в месте надреза до испытания. В зависимости от типа надреза удельная работа обозначается КСU при применении U – образного надреза, KCV, если использован V – образный надрез и КСТ в случае испытаний образца с трещиной.

Для определения порога хладноломкости испытания на удар проводят при различных температурах. Для многих металлов и сплавов при определенных температурах изменяется механизм разрушения. Вязкое разрушение с понижением температуры сменяется на хрупкое. Температурный интервал изменения характера разрушения называется порогом хладноломкости .

Вязкое разрушение характеризуется волокнистым изломом и определенной работой по распространению трещины, а хрупкое – кристаллическим изломом при практически нулевом значении работы по распространению трещины. Порог хладноломкости характеризуется температурным интервалом, в котором содержание волокон в изломе (%В) или работа по распространению трещины (А р) изменяются от 100% (или некоторого значения для А р) до нуля. Кривая, подобная изображенной на рис. 10 называется сериальной т.к. для ее построения требуется проведение серии испытаний при разных температурах.

Рис. 10. Сериальные кривые

Порог хладноломкости характеризуется двумя температурами: Т в (температура, выше которой илом полностью вязкий) и Т н (ниже этой температуры излом полностью хрупкий и А р =0). Если порог хладноломкости характеризовать одной цифрой, то указывают середину порога Т 50 (температура, при которой 50% волокна в изломе или величина А р уменьшились вполовину). Эта температура называется температурой полухрупкости .

7.4. Испытания на твердость. Под твердостью материала понимается сопротивление проникновения в него постороннего тела (индентора) т.е. твердость также характеризует сопротивление деформации.

Рис. 11. Схемы испытания на твердость

а – по Бринеллю, б – по Роквеллу, в – по Виккерсу

Наиболее распространенным методом определения твердости является метод Бриннеля (рис. 11а), когда в испытуемый образец под действием силы Р внедряется шарик диаметром D. Число твердости по Бриннелю НВ есть нагрузка Р, деленная на сферическую поверхность отпечатка диаметром d.

При методе Роквелла (рис. 11б) индентором служит алмазный конус. Числом твердости называется величина, обратная глубине вдавливания (h).

При методе Виккерса (рис. 11в) вдавливается алмазная пирамидка и по диагонали отпечатка (d) судят о твердости (HV).

Механические испытания в зависимости от характера действия нагрузки во времени могут быть:

статические , при которых нагружение производится медленно и нагрузка возрастает плавно от нуля до некоторой максимальной величины или остается постоянной длительное время при малой скорости деформации;

Динамические , при которых нагрузка на образец возрастает мгновенно при большой скорости деформации;

- повторно-переменные (или циклические), усталостные, при которых изменяются величина и направление действия нагрузки. По результатам испытаний определяют число циклов до разрушения при разных значениях напряжений или то предельное напряжение, которое образец выдерживает без разрушения в течение опреленного числа циклов нагружения.

Кроме того, проводят испытания на ползучесть и длительную прочность при повышенных температурах с целью определения жаропрочности металла или сплава.

При статических, динамических и усталостных испытаниях, а также при испытаниях на твердость и жаропрочность определяют стандартные механические свойства металлов и сплавов: прочностные характеристики - предел пропорциональности, продел упругости, предел текучести, временное сопротивление, пластические характеристики - относительное удлинение и относительное сужение, а также твердость, ударную вязкость, предел выносливости, предел ползучести или предел длительной прочности.

Испытание на растяжение

При испытании на растяжение, согласно ГОСТ 1497, определяют сопротивление металла малым пластическим деформациям, характеризующееся пределом пропорциональности σ пц, пределам упругости σ у и пределом текучести σ т (или σ 0,2 ), а также сопротивление значительным пластическим деформациям, которое выра жают временным сопротивлением σ в.

При растяжении определяют и пластичность металла, то есть величину пластической деформации до разрушения, которая может быть оценена относительным удлинением образца δ и его относительным сужением ψ (после разрыва образца).

Для испытания на растяжение используют стандартные образцы (см. ниже). Машина для испытаний снабжена устройством, записывающим диаграмму растяжения.

Диаграмма растяжения показывает зависимость между растягивающей нагрузкой, действующей на образец, и его деформацией. На диаграмме по оси ординат записывают нагрузку Р , а по оси абсцисс - абсолютное удлинение образца Δ l (Δl = l х - lо, где l х и lо - теку щая (в данный момент времени) и начальная длины образца) - Рис. 1

Рис. 1. Схема диаграммы растяжения: изменение удлинения образца в зависимости от нагрузки

Кривая изменения абсолютного удлинения Δ l в зависимости от прилагаемой нагрузки Р при растяжении состоит из прямолинейного участка ОА и криволинейного АВ , отвечающего переходу в область пластических (остаточных) деформаций и характеризуемой постепенным уменьшением тангенса угла наклона кривой к оси абсцисс (см. Рис. 1).

Пластической называют деформацию, остающуюся после снятия нагрузки (кроме того, наблюдается обратимая пластическая деформация, которая, как и упругая, исчезает после снятия нагрузки) . Величина остаточной деформации в момент раз ру­шения (удлинение, сужение) служит мерой пластичности материала. Если величина пластической деформации до разрушении мала, то материал называют хрупким. Пластическая деформация предшествует любому виду разрушения (вязкому или квазихрупкому), но при квазихрупком разрушении она весьма мала, локализована в микро- и субмикрообъемах и не выявляется при обычных методах измерения макродеформации. В этом последнем случае необходимо изыскание таки x условий испытания (скорости нагружения,температуры испыта­нии и т. п.), при которых можно было бы выявить пластичность материала.

Для возможности сравнения результатов испытаний различных но размерам образцов целесооб­разно установить связь между удельными и относительными ве­личинами, т. е. между условным напряжением σ, равным P / F 0 , где P - F 0 - плошадь поперечного се­чения образца до испытания, и относительным удлинением δ, равным Δ l / I 0 , где Δ l - абсолютное уд- шпение образца; I 0 - длина образца до испытания. Так как значе­нии Р и Δ l делятся на постоянные для данных условий испытания величины, то вид диаграммы, приведенной на Рис. 1, не меняется (отличается только масштабом) при переходе от координат P – Δ l к координатам σ - δ.

Напряжения ниже точки А практически не вызывают измери­мой остаточной деформации и относительно этой точки могут быть установлены (с определенным допуском на точность измеря­емых деформаций) предел упругости σ у , а также предел пропорци­ональности σ пц . Здесь и далее напряжения получаются делением соответствующей нагрузки на F 0 - плошадь поперечного сечения образца до испытания.

Предел упругости σ у - условное напряжение, соответствующее появлению остаточных деформаций определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформа­цию указывается в индексе при σ у .

Предел пропорциональности σ пц - условное напряжение, соот ветствущее отклонениям от линейного хода кривой деформации (от закона Гука), задаваемым определенным допуском (например, увеличением тангенса угла наклона кривой деформации к оси на­пряжения на 25 или 50% при переходе от прямолинейного участка к криволинейному).

Следует отметить, что для реальных поликристоллических металлов определение σ у и σ пц представляет значительные методич еские трудности, так как предусматривает измерение очень малых деформаций. Поэтому на практике чаще обращаются к такой характеристике, как условный предел текучести.

Условный предел текучести - это условное напряжение, при котором остаточная деформация достигает определенной величина (обычно 0, 2% от рабочей длины образца; тогда условный предел текучести обозначают как σ 0,2 ). Величину σ 0,2 определяют, правило, для материалов, у которых на диаграмме отсутвует площадка или зуб текучести.

В тех случаях, когда диаграмма растяжения имеет площадку текучести (Рис. 2, а), измеряют физический предел текучести σ т , условное напряжение, соответствующее наименьшей нагрузке площадки текучести, когда деформация образца происходит увеличения нагрузки. Иногда распространение деформации по длине образцов из пластичных материалов при напряжениях, отвечающих площадке текучести, носит волнообразный характер: вначале образуется местное утонение сечения, затем это утононение переходит на соседний объем материала и этот процесс разшнми ся до тех пор, пока в результате распространения такой волны не возникает общее равномерное удлинение, отвечающее площадке текучести. Когда имеется зуб текучести (Рис. 2, б ), вводят понятия о верхнем σ в т и нижнем σ н т пределах текучести.

Рис. 2. Схемы диаграмм растяжения металлов, дающих площадку (а) зуб (б) текучести

Если при испытании образцов, например на растяжение, не возникает локализованной деформации (не образуется шейки - местное сужение поперечного сечения), то образец из хрупких металлов разрушается при какой-то максимальной нагрузке, отвечающей точке В на Рис. 1. Деление этой нагрузки на площадь начального поперечного сечения дает разрушающее напряжение, называемое временным сопротивлением σ b (это условное напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом). В тех случаях, когда окончание растяжения сопровождается местным утонением образца (образованием шейки), диаграмма растяжения имеет вид, изображенный на Рис. 2, т. е. нагрузка в момент разрыва пластичного металла и напряжение, отнесенное к исходному сечению (в точке D ), могут быть меньше, чем напряжение в какой-то предыдущий момент растяжения. Но и и этом случае временное сопротивление определяется применительно к точке В , т. е. относительно максимальной нагрузки, момент достижения которой практически совпадает с началом образования шейки в образце из пластичного материала. Появление шейки определяет переход от равномерной деформации всей рабочей части образца к сосредоточенной деформации в определенном сечении.

При переходе в область пластических деформаций (правее точки А на диаграмме Рис. 1) изменения поперечного сечения образца становятся уже значительными и отнесение нагрузки к исходному (до деформации) сечению F 0 дает лишь условные напряжен ия. Если учитывать изменение сечения при деформации и относить нагрузку не к исходному сечению, а к сечению в каждый дан­ный момент деформации F x , то получают истинные напряжения. Эти последние, естественно, отличаются от условных напряжений и тем больше, чем пластичнее материал (чем сильнее изменяется сечение в ходе деформации относительно исходного). Соответственно изменяется вид диаграммы растяжения, которая схематично показана на Рис. 3. В случае хрупких материалов (чугун, литые алюминиевые сплавы и др.) различие между истинными и услов­ными напряжениями может быть небольшим.

По диаграмме растяжения, как было отмечено выше, можно судить и о пластичности металла, которая характеризуется относительным удлинением после разрыва δ и относительным сужением площади сечения у образца.

П од относительным удлинением δ понимают отношение абсо лютного удлинения образца после разрыва Δ l = l к - lо (где l к - конечная длина образца) к его начальной расчетной длине l о, выри женное в процентах, т. е.

δ = ( l к - lо)* 100%/ l о

В случае испытания «коротких» (пятикратных) образцов (см. ниже) относительное удлинение обозначают δ 5 , в случае « длин ных» (десятикратных) – δ 10 .

Относительное сужение после разрыва ψ представляет собой o тношение уменьшения площади поперечного сечения разорванного образца Δ F = F 0 - F K (где F K - минимальная площадь поперечного сечения образца после его разрыва) к первоначальной площади поперечного сечения Fo , выраженное в процентах, т. е.

Ψ = ( F 0 - F K )*100%/ F 0

При расчете режимов обжатий в процессах обработки меча им» давлением чаще всего используют показатель δ.

Тангенс угла наклона прямой ОА к оси абсцисс (см. Рис. 1) характеризует модуль упругости материала Е = σ / δ (где δ - относительная деформация, равная Δ l / l 0 ). Модуль упругости E определяет жесткость материала: интенсивность увеличения напряжения по мере увеличении упругой деформации. Физический смысл Е сводится к тому, что он характеризует сопротивляемость металла упругой деформации. Модуль упругости практически не зависит от структуры металла и определяется силами межатомной связи. Все другие механические свойства являются структурно чувствительными и изменяются в зависимости от структуры в широких пределах.

Рис. 3. Условное изображение диаграммы растяжения (сплошная линия) и диаграммы истинных напряжений (штриховая линия)

Следует отметить, что закон пропорциональности между на­пряжением и деформацией является справедливым лишь в первом приближении. При точных измерениях даже при небольших на­пряжениях в упругой области наблюдаются отклонения от закона пропорциональности. Это явление называют неупругостъю . Оно проявляется в том, что деформация, оставаясь обратимой, отстает по фазе от действующего напряжения. В связи с этим при нагрузке-разгрузке на диаграмме растяжения вместо прямой линии получается петля гистерезиса, так как линии нагрузки и разгрузки не совпадают между собой.

Механические свойства металлов в испытаниях на растяжение определяют, используя стандартные образцы, общий вид которых показан на Рис. 4.

Необходимо строго соблюдать определенные соотношения между начальной расчетной длиной образца l 0 и начальной площа­дью поперечного сечения в рабочей части образца F 0 . Используют образцы двух видов: цилиндрические и плоские. Оба вида образ­ном для испытания на растяжение применяют с начальной расчет­ной длиной lо = 5,65√F 0 или lо = 11,3√F 0 диаметром do = 3...25 мм или толщиной а о = 0,5. ..25 мм и шириной b 0 = 20...30 мм. При ном образцы с расчетной длиной lо = 5, √F 0 именуются «корот­кими», а образцы с lо = 11,3 √F 0 - «длинными», причем примене­ние первых предпочтительнее. Литые образцы и образцы из хруп­ких металлов допускается изготавливать с начальной расчетной длиной lо = 2,82√F 0 .

В случае цилиндрических образцов в качестве основных приме­няют образцы с диаметром do = 10 мм и начальной расчетной дли­ной l 0 = 5 do (короткие) и lо = 10 d 0 (длинные); в первом случае по­ручаемое значение относительного удлинения после разрыва обозначают δ 5 , во втором - δ 10 .


Рис. 4. Общий вид стандартных образцов для испытания на растяжение: а - цили ндрический образец; б - плоский

Испытание на сжатие

Испытание на сжатие обычно применяют для определения механических свойств хрупких материалов. Цилиндрические образцы диаметром 10...25 мм и высотой, равной диаметру, подвергают сжатию, фиксируя при этом упругие и остаточные деформации Торцовые поверхности образцов должны быть отшлифованы, плоскопараллельными и перпендикулярными к оси образца. Большое влияние на результаты испытания оказывает трение на торцах об разцов. Для уменьшения трения применяют специальные прокладки (свинцовые) или смазку торцов.

Испытание на сжатие производят на тех же машинах, что и ж пытание на растяжение, с использованием приспособлений (реверсов) для превращения растягивающей нагрузки в сжимающую. При испытании на сжатие получают диаграмму сжатия (Рис. 5), по которой определяют основные механические характеристики испытуемого материала. В процессе сжатия образца из пластичного металла при напряжении ниже предела текучести металл ведет так же, как и при растяжении. После достижения предела текучести образец пластически деформируется, принимая бочкообразную форму. При смазке торцов или наличиимягких прокладок на торцах деформация образца по высоте получается более равномерной.

При испытании на сжатие пластичных металлов (см. рис. 5 кривые 2 и 3) обычно определяют пределы пропорциональности и текучести как при испытании на растяжений, а степень осадки (относительную деформацию) находят из соотношения:

ε = (h 0 -h 1)*100%/h 0 ,

где hо и h 1 - высоты образца до и после осадки.

Рис. 5. Сравнительные схемы диаграмм сжатия различных металлов: 1 - чугун; 2 - медь; 3 - сталь

В случае испытания на сжатие хрупких металлов (см., например, Рис. 5, кривая 1) достижение в точке В напряжения σ в сопровождается разрушением образца. Разрушение образца обычно происходит под углом 45° к линии действия сжимающей силы.

Прочностью называется способность металла не поддаваться разрушению под действием внешних нагрузок. Ценность металла как машиностроительного материала наряду с другими свойствами определяется прочностью.

Величина прочности указывает, какая сила необходима, чтобы преодолеть внутреннюю связь между молекулами.

Испытание металлов на прочность при растяжении производится на специальных машинах различной мощности. Эти машины состоят из нагружающего механизма, который создает усилие, производит растяжение испытываемого образца и показывает величину усилия, приложенного к образцу. Механизмы бывают механического и гидравлического действия.

Мощность машин различна и достигает 50 т. На рис. 7, а показано устройство машины, состоящей из станины 2 и зажимов 4, при помощи которых закрепляются испытываемые образцы 3.

Верхний зажим закреплен в станине неподвижно, а нижний при помощи особого механизма при испытании медленно опускается, растягивая образец.




Рис. 7. Испытание металлов на растяжение :

а - прибор для испытания металлов на растяжение; б - образцы для испытания на растяжение: I - круглый, II - плоский

Нагрузка, передаваемая при испытании на образец, может быть определена по положению стрелки прибора на измерительной шкале 1.

Испытание образцов должно всегда проводиться в одинаковых условиях, чтобы полученные результаты можно было сравнивать. Поэтому соответствующими стандартами установлены определенные размеры образцов для испытания.

Стандартными образцами для испытания на растяжение являются образцы круглого и плоского сечений, показанные на рис. 7, б.

Плоские образцы применяют при испытании листов, полосового материала и т. д., а если профиль металла позволяет, то делают круглые образцы.

Пределом прочности (σ b) называется наибольшее напряжение, которое может испытывать материал до его разрушения; предел прочности металла равняется отношению наибольшей нагрузки при испытании образца на разрыв к первоначальной площади поперечного сечения образца, т. е.

σ b = P b /F 0 ,

где Р b - наибольшая нагрузка, предшествующая разрыву образца, кгс;

F 0 - начальная площадь поперечного сечения образца, мм 2 .

В целях безопасной работы машин и сооружений необходимо, чтобы при эксплуатации напряжения в материале не превышали установленного предела пропорциональности, т. е. наибольшего напряжения, при котором не вызываются деформации.

Предел прочности некоторых металлов при испытании на растяжение, кгс/мм 2:

Свинец 1,8

Алюминий 8

Механические свойства металлов

Поведение металла под нагрузкой определяется его механическими свойствами (прочностью, пластичностью, твердостью, упругостью, жесткостью, вязкостью). Методы испытаний механических свойств в зависимости от характера действия нагрузки делят на три группы: статические, когда нагрузка возрастает медленно (плавно); динамические – нагрузка возрастает с большой скоростью (мгновенно) – удар; циклические – при повторно-переменных нагрузках, когда нагрузка многократно изменяется по величинœе и знаку (испытания на усталость).

Механические свойства металлов при статическом нагружении. В результате испытаний определяют следующие характеристики металлов: прочность, пластичность, твердость, упругость, жесткость.

Прочность – свойство металла сопротивляться пластической деформации и разрушению под действием внешних сил. Учитывая зависимость отспособа статического нагружения различают прочность при растяжении, сжатии и изгибе.

Испытания на растяжение. Для испытаний применяют специальные цилиндрические или плоские образцы. Расчетная длина образца равна десяти- или пятикратному диаметру. Образец закрепляют в испытательной машинœе и нагружают. Результаты испытаний отражают на диаграмме растяжения.

На диаграмме растяжения пластичных металлов (рис. 13, а) можно выделить три участка: ОА – прямолинœейный, соответствующий упругой деформации; АВ – криволинœейный, соответствующий упругопластической деформации при возрастании нагрузки; ВС – соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит разрушение образца с разделœением его на две части.

От начала деформации (точка О) до точки А образец деформируется пропорционально приложенной нагрузке. Участок ОА – прямая линия. Максимальное напряжение, не превышающее предела пропорциональности, практически вызывает только упругую деформацию, в связи с этим его часто называют пределом упругости металла.

Рис. 13. Диаграмма растяжения пластичных металлов:

а – с площадкой текучести; б – без площадки текучести

При испытании пластичных металлов на кривой растяжения образуется площадка текучести АА¢. В этом случае напряжение, отвечающее этой площадке, s т называют физическим пределом текучести . Физический предел текучести - ϶ᴛᴏ наименьшее напряжение, при котором металл деформируется (течет) без заметного изменения нагрузки.

Напряжение, вызывающее остаточную деформацию, равную 0,2 % от первоначальной длины образца, называют условным пределом текучести (σ 0,2).

Участок А¢В (см. рис 13, а) соответствует дальнейшему повышению нагрузки и более значительной пластической деформации во всœем объеме металла образца. Напряжение, соответствующее наибольшей нагрузке (точка В), предшествующей разрушению образца, называют временным сопротивлением , или пределом прочности при растяжении σ в. Это характеристика статической прочности:

s в = Р max / F 0 , (3)

где Р max – наибольшая нагрузка (напряжение), предшествующая разрушению образца, МПа;

F 0 – начальная площадь поперечного сечения образца, м 2 .

У пластичных металлов, начиная с напряжения σ в, деформация сосредоточивается (локализуется) в одном участке образца, где появляется сужение, так называемая шейка. В результате развития множественного скольжения в шейке образуется множество вакансий и дислокаций, возникают зародышевые несплошности. Сливаясь, они образуют трещину, которая распространяется в поперечном направлении растяжению, и образец разрушается (точка С). Кривая растяжения образца без площадки текучести показана на рис. 13, б.

Пластичность – свойство металла пластически деформироваться, не разрушаясь под действием внешних сил. Это одно из важных механических свойств металла, ĸᴏᴛᴏᴩᴏᴇ в сочетании с высокой прочностью делает его основным конструкционным материалом. Для определœения пластичности не требуется образцов и оборудования. После испытания металла на растяжение эти же образцы измеряют и определяют характеристики пластичности. Показатели пластичности – относительное удлинœение δ и относительное сужение ψ.

Относительным удлинœением δ принято называть отношение абсолютного удлинœения, т. е. приращения расчетной длины образца после разрыва (l l 0), к его первоначальной расчетной длинœе l 0 , выраженное в процентах:

где l 0 – первоначальная длина образца, мм;

l – длина образца после разрыва, мм.

Относительным сужением y принято называть отношение абсолютного сужения, т. е. уменьшения площади поперечного сечения образца после разрыва (F о – F ), к первоначальной площади его поперечного сечения, выраженное в процентах:

где F 0 – первоначальная площадь поперечного сечения образца, мм 2 ;

F – площадь поперечного сечения образца после разрыва, мм 2 .

Твердость – свойство металла сопротивляться внедрению в него другого более твердого тела. Для определœения твердости часто не требуется изготовления специальных образцов, испытания проводятся без разрушения металла.

Твердость металла можно определять прямыми и косвенными методами: вдавливанием, царапаньем, упругой отдачей, магнитным методом. Прямые методы состоят в том, что в металл вдавливают твердый наконечник (индентор) различной формы из закаленной стали, алмаза или твердого сплава (шарик, конус, пирамида). После снятия нагрузки на индентор в металле остается отпечаток, размер которого характеризует твердость.

Существует множество методов определœения твердости металлов. Но лишь некоторые из них нашли широкое применение в машиностроении. Все они названы в честь своих создателœей.

Метод Бринœелля . В плоскую поверхность металла вдавливается стальной закаленный шарик диаметром 10; 5 или 2,5 мм (рис. 14, а). После снятия нагрузки в металле остается отпечаток (лунка). Диаметр отпечатка d измеряют специальным микроскопом с точностью 0,05 мм. На практике пользуются специальной таблицей, в которой каждому диаметру отпечатка соответствует определœенное число твердости НВ.

Диаметр шарика и нагрузку устанавливают в зависимости от испытуемого металла, его твердости и толщины. Важно заметить, что для стали и чугуна нагрузка Р = 3000 кг, диаметр шарика d = 10 мм. К примеру, твердость технически чистого желœеза, по Бринœеллю, равна 80 – 90 единицам НВ.

Метод Бринœелля не рекомендуется применять для металлов с твердостью более НВ450, так как шарик может деформироваться и получится искаженный результат. Этот метод в основном используется для измерения твердости неупрочненного металла заготовок и полуфабрикатов.

Метод Роквелла . Твердость определяют по глубинœе отпечатка. Наконечником служит стальной закаленный шарик диаметром 1,58 мм для мягких металлов или алмазный конус с углом при вершинœе 120° – для твердых и сверхтвердых (более HRC70) металлов (рис. 14, б).

Шарик и конус вдавливаются в металл нагрузкой 60, 100 или 150 кᴦ. Отсчет результатов измерений определяется по показанию стрелки на шкале индикатора твердомера (рис. 15, а). После включения нагрузки стрелка перемещается по шкале индикатора твердомера (рис. 15, б) и указывает значение твердости (рис. 15, в).

Рис. 15. Показания индикатора прибора ТК

При вдавливании стального шарика нагрузка – 100 кг (отсчет по внутренней (красной) шкале индикатора), твердость обозначают как НRВ. При вдавливании алмазного конуса отсчет твердости осуществляется по показанию стрелки на наружной (черной) шкале индикатора (см. рис. 15, в). Нагрузка 150 кг – для твердых металлов. Это основной метод измерения твердости закаленных сталей. Обозначение твердости – НRC. Для очень твердых металлов, а также мелких деталей нагрузка – 60 кг, обозначение твердости – НRА.

Определœение твердости по Роквеллу дает возможность испытывать мягкие и твердые металлы, а отпечатки от шарика или конуса очень малы, в связи с этим можно измерять твердость готовых деталей. Измерения не требуют никаких вычислений – число твердости читается на шкале индикатора твердомера. Поверхность для испытания должна быть шлифованной.

Метод Виккерса . В испытуемую поверхность (шлифованную или полированную) вдавливается четырехгранная алмазная пирамида под нагрузкой 5, 10, 20, 30, 50, 100 кᴦ. В металле остается квадратный отпечаток. Специальным микроскопом твердомера измеряют величину диагонали отпечатка (рис. 16). Зная нагрузку на пирамиду и величину диагонали отпечатка, по таблицам определяют твердость металла, обозначаемую как HV.

Этот метод универсальный. Его можно использовать для определœения твердости деталей малой толщины и тонких поверхностных слоев большой твердости (после азотирования, нитроцементации и т. п.). Чем тоньше металл, тем меньше должна быть нагрузка на пирамиду, но чем больше нагрузка, тем точнее получаемый результат.

Прочность при динамическом нагружении (испытания на ударную вязкость – на удар).В процессе эксплуатации многие детали машин испытывают динамические (ударные) нагрузки. Для определœения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб. В результате определяют ударную вязкость – характеристику динамической прочности.

Для определœения ударной вязкости применяют 20 типов образцов (обычно размером 10 ´ 10 ´ 55 мм) с U- или V-образным надрезом. Надрез посœерединœе образца принято называть концентратором. Испытания проводят на маятниковом копре 1 (рис. 17, а). Маятник 2, падая с определœенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 17, б). Работа удара К (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:

К = G (h 1 – h 2), (6)

где G – вес маятника, Н;

h 1 – высота подъема маятника до разрушения образца, м;

h 2 – высота подъема маятника после разрушения, м.

Ударная вязкость обозначается КС (прежнее обозначение – a н) и подсчитывается как отношение работы, затраченной на разрушение образца К , к площади поперечного сечения образца в месте надреза F , МДж/м 2:

КС (a н) = К / F . (7)

В случае если образец имеет U-образный надрез, то в обозначение ударной вязкости добавляется буква U (КСU ), а если V-образный, то добавляется буква V (КСV ). К примеру, KCU = 1 кгс×м/см 2 = 98 кДж/м 2 .

Определœение ударной вязкости является наиболее простым и показательным способом оценки способности металлов, имеющих объемно центрированную кубическую решетку, к хрупкости при работе в условиях низких температур, называемой хладноломкостью .

Практически хладноломкость определяют при испытании на удар серии образцов при нескольких понижающихся значениях температуры (от комнатной до минус 100°С). Результаты испытаний наносят на график в координатах «ударная вязкость – температура испытания». Температура, при которой происходит падение ударной вязкости, принято называть критической температурой хрупкости , или порогом хладноломкости . Порог хладноломкости – отрицательная температура, при которой металл переходит из вязкого состояния в хрупкое.

Прочность при циклическом нагружении (испытания на усталость). Многие детали (валы, рессоры, рельсы, шестерни) в процессе работы подвергаются повторно-переменным нагрузкам. Разрушение таких деталей при эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла. Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, принято называть уста-лостью . Свойство металла выдерживать большое число циклов переменных напряжений, т. е. противостоять усталости, принято называть выносливостью , или циклической (усталостной ) прочностью .

Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках. Она характеризуется наибольшим напряжением s -1 , ĸᴏᴛᴏᴩᴏᴇ выдерживает металл при бесконечно большом числе циклов нагружения не разрушаясь и принято называть пределом усталости, или пределом выносливости. Для углеродистой конструкционной стали предел усталости принимается равным (0,4 – 0,5) s в.

Значение предела выносливости зависит от целого ряда факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.

Разрушение металлов при усталости отличается от разрушения при однократных нагрузках особым видом излома. При знакопеременной нагрузке происходит постепенное накопление напряжения, обусловленное движением дислокаций. Поверхность детали, как наиболее нагруженная часть сечения, претерпевает микродеформацию, и в наклепанной (упрочненной деформацией) зоне возникают микротрещины. Из множества микротрещин развитие получает только та͵ которая имеет наиболее острую вершину и наиболее благоприятно расположена по отношению к действующему напряжению.

Пораженная трещиной часть сечения детали не несет нагрузки, и она перераспределяется на оставшуюся часть, которая непрерывно уменьшается, пока не произойдет мгновенное разрушение. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для усталостного излома характерно, как минимум, наличие зоны прогрессивно растущей трещины 1 и зоны долома 2 (рис. 18).

Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.

Живучесть - ϶ᴛᴏ способность металла работать в поврежденном состоянии после образования трещины. Она измеряется числом циклов нагружения до разрушения или скоростью развития трещины усталости при данном напряжении. Живучесть является самостоятельным свойством, ĸᴏᴛᴏᴩᴏᴇ не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии. Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.

Для повышения усталостной прочности деталей желательно в поверхностных слоях металла создавать напряжение сжатия методами поверхностного упрочнения (механическими, термическими или химико-термическими).

3. металлические сплавы

Чистые металлы в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств, в связи с этим для изготовления деталей машин наибольшее распространение получили металлические сплавы – вещества, обладающие металлическими свойствами, представляющие собой сочетание какого-либо металла (основа сплава) с другими металлами или неметаллами. К примеру, латунь – сплав меди (металл) с цинком (металл), сталь – сплав желœеза (металл) с углеродом (неметалл). Большинство сплавов получают путем сплавления, т. е. соединœения компонентов сплава в жидком состоянии. Есть и другие способы образования сплавов. Так, металлокерамические сплавы образуются путем спекания из порошков.

Испытание на растяжение металла заключаются в растяжении образца с построением графика зависимости удлинения образца (Δl) от прилагаемой нагрузки (P), с последующим перестроением этой диаграммы в диаграмму условных напряжений (σ - ε)

Испытания на растяжение проводятся по , по этому же ГОСТу определяются и образцы на которых проводятся испытания.

Как уже говорилось выше, при испытаниях строится диаграмма растяжения металла. На ней есть несколько характерных участков:

  1. Участок ОА - участок пропорциональности между нагрузкой Р и удлинением ∆l. Это участок, на котором сохраняется закон Гука. Данная пропорциональность была открыта Робертом Гуком в 1670 г. и в дальнейшем получила название закона Гука.
  2. Участок ОВ - участок упругой деформации. Т.е., если к образцу приложить нагрузку, не превышающую Ру, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении

Выше точки В диаграмма растяжения отходит от прямой - деформация начинает расти быстрее нагрузки, и диаграмма принимает криволинейный вид. При нагрузке, соответствующей Рт (точка С), диаграмма переходит в горизонтальный участок. В этой стадии образец получает значительное остаточное удлинение практически без увеличения нагрузки. Получение такого участка на диаграмме растяжения объясняется свойством материала деформироваться при постоянной нагрузке. Это свойство называется текучестью материала, а участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.
Иногда площадка текучести носит волнообразный характер. Это чаще касается растяжения пластичных материалов и объясняется тем, что вначале образуется местное утонение сечения, затем это утонение переходит на соседний объем материала и этот процесс развивается до тех пор, пока в результате распространения такой волны не возникает общее равномерное удлинение, отвечающее площадке текучести. Когда имеется зуб текучести, при определении механических свойств материала, вводят понятия о верхнем и нижнем пределах текучести.

После появления площадки текучести, материал снова приобретает способность сопротивляться растяжению и диаграмма поднимается вверх. В точке D усилие достигает максимального значения Pmax. При достижении усилия Pmax на образце появляется резкое местное сужение - шейка. Уменьшение площади сечения шейки вызывает падение нагрузки и в момент, соответствующий точке K диаграммы, происходит разрыв образца.

Прилагаемая нагрузка для растяжения образца зависит от геометрии этого образца. Чем больше площадь сечения, тем более высокая нагрузка необходима для растяжения образца. По этой причине, получаемая машинная диаграмма не дает качественной оценки механических свойств материала. Чтобы исключить влияние геометрии образца, машинную диаграмму перестраивают в координатах σ − ε путем деления ординат P на первоначальную площадь сечения образца A0 и абсцисс ∆l на lо. Перестроенная таким образом диаграмма называется диаграммой условных напряжений. Уже по этой, новой диаграмме, определяют механические характеристики материала.

Определяются следующие механические характеристики:

Предел пропорциональности σпц – наибольшее напряжение, после которого нарушается справедливость закона Гука σ = Еε , где Е – модуль продольной упругости, или модуль упругости первого рода. При этом Е =σ/ε = tgα , т. е. модуль E это тангенс угла наклона прямолинейной части диаграммы к оси абсцисс

Предел упругости σу - условное напряжение, соответствующее появлению остаточных деформаций определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформа­цию указывается в индексе при σу

Предел текучести σт – напряжение, при котором происходит увеличение деформации без заметного увеличения растягивающей нагрузки

Также выделяют условный предел текучести - это условное напряжение, при котором остаточная деформация достигает определенной величины (обычно 0,2% от рабочей длины образца; тогда условный предел текучести обозначают как σ0,2). Величину σ0,2 определяют, как правило, для материалов, у которых на диаграмме отсутствует площадка или зуб текучести