Тепловые сети схемы и конфигурации тепловых сетей. Тепловые схемы тепловых узлов: как читать чертежи и что они значат. Как определить схему теплового узла

С. теплоснабжения – это совокупность устройств для производства тепловой энергии, её транспортирование, распределение и потреблении.

Схема:

1) Источник тепловой энергии (ТЭЦ, РК, ГК, АК, и тд.). 2) Теплопроводы для транспортирования тепловой энергии от источника к потребителю. 3) Тепловые пункты для присоединения, учёта и контроля потребления тепловой энерг. 4) Потребители тепловой энергии (ОВ + ГВС + технологические нужды).

Виды тепловых пунктов: 1. центральные (обслуживают несколько зданий или кварталов и отдельные здания). 2. местные (обслуживают здание в котором и расположены).

2.Классификация систем теплоснабжения.

1
) По расположению источника тепловой эн.: Централизованная (источник тепловой энергии обслуживает 2 и более здания). Децентрализованная (обслуживает одно здание или отдельные помещения). 2) По теплоносителю (водяные и паровые). 3) По способу приготовления воды на ГВС: Открытые (вода для ГВС отбирается из тепловых сетей), Закрытые (вода готовится в водоподогревателях). 4) По количеству трубопроводов (системы теплоснабжения бывают 1,2,3,4,5 и т.д. трубные). Однотрубные бывают только открытые:

Основной тип теплоснабжения это двухтрубная система. (принимается в тех случаях когда тепловая нагрузка может быть обеспечена одним видом теплоносителя и приблизительно одинаковой температурой. 2-х трубные системы могут быть открытые и закрытые.

трёхтрубная:

четырёхтрубная в жилом квартале:

для обеспечения постоянной температуры воды

системе ГВС при малом водоразборе или при

его отсутствии

5) По конфигурации (тс бывают тупиковые, кольцевые и кольцевые с контрольно распределительными пунктами).

3. Схемы тепловых сетей.

Тупиковая: достоинства (простая схема, небольшие капиталовложения), недостатки (низкая надёжность, т.к. потребитель получает тепловую эн. только с одного направления, а при аварии полностью отключается от системы теплоснабжения).

С
хема:

С целью повышения надёжности все ТС делят на отдельные участки с регулирующими задвижками для сокращения ликвидации аварии.

Кольцевая: достоинства (более высокая надёжность т.к. потребители могут получать тепловую эн. с двух направлений. К кольцевой сети могут подключаться несколько источников тепловой эн., что повышает надёжность. Возможность использовать тепловую эн. источниками работающими на разных видах топлива). Недостатки (повышенные капиталовложения на 20-30 %. Более сложное регулирование тепловых нагрузок).

1. Магистральные трубопроводы тс.

2. Распределительные

3. Внутриквартальные

Кольцевая с контрольно распределительными пунктами.

Схема:

1.2.3. магистрали распределительные

квартальные. 4. секционная задвижка

5. головные задвижки распределител.

сетей. 6. Одно или 2-х трубная

перемычка.

Задвижка (а) открыта. при аварии (а)

закрыта, открыты (c , d ).

Устройство КРП увеличивает

затраты на 10%.

4.Опоры трубопроводов тепловых сетей.

Опоры бывают подвижные и не подвижные. Подвижные (скользящие, подвесные, роликовые, котковые). Опоры предназначены для восприятия веса трубопровода и обеспечивают его перемещение при температурных деформациях. Скользящие применяются при всех видах прокладки.



1. трубопровод

2. скользящая опора

3. опорная подушка

4. бетон

Роликовая опора:

1. ролик

µ ТР = 0,4

Котковая опора:

1
. каток

µ ТР = 0,2

Роликовые и катковые опоры не применяются при подземной безканальной, канальной и не проходных каналах, прокладке, т.к. требуют обслуживания.

Подвесные опоры:

1. тяга

2. пружина

3. хомут

Неподвижные опоры предназначены для восприятиявеса трубопровода и жёстко фиксирует трубопровод вместе её установки (хомутове, щитовые, лобовые).

Хомутовые опоры: 1. хомут


2. упоры

Применяется при всех видах прокладки

Щитовая опора :


1. железобетонный щит

воспринимающий нагрузку.

2.четырёхупорная неподвижная

опора

Применяется при всех видах

прокладки кроме надземной

на высоких опорах.

5. Компенсаторы тепловых сетей и правила их установки.

Компенсаторы служат для восприятия изменения длины трубопровода при его температурных деформациях. Компенсаторы бывают осевые и радиальные.

Осевые (сальниковые, линзовые, сильфонные).

Сальниковые:


1. корпус.2. стакан. 3. опорное

кольцо. 4. уплотнительное

кольцо. 5. Сальниковая набивка.

Достоинства (малые габариты,

небольшое гидравлическое

сопротивление, небольшие

затраты).

Недостатки (требуют переоди

ческого обслуживания, возможен

перекос осей корпуса и стакана,

что приводит к заклиниванию).

Применяются (на трубопроводах

d ≥100, при давлениях Р ≤ 2.5

МПа). ∆ L = 350мм.

Линзовые:


1. линза. 2. металлическая вставка для

уменьшения гидропотерь.

компенсирующая способность одной линзы

5мм. Установка более 5 линз нежелательна.

Достоинства(допускают радиальные

перемещения).

Сильфонные: + Не требуют обслуживания

- Большая стоимость

Радиальная компенсация осуществляется за счёт изгибов криволинейных участков, изгибов трубопровода (самокомпенсация), или за счёт специальных вставок.

Самокомпенсация: Специальные вставки:


омегообразный компенсатор

П
– образный компенсатор Достоинства П – образных компенсаторов:

устанавливается и изготавливается не посред

ственно на стройплощадках и не большие кап.

затраты.

Недостатки: увеличенные гидравлические

сопротивления.

Правила установки компенсаторов: 1. П – образные компенсаторы устанавливаются между неподвижными опорами по середине. 2. Устройства устанавливаются справа по ходу теплоносителя. 3. Острые углы не допускаются, если имеется острый угол то в углу необходима установка не подвижной опоры. 4. Сальниковые компенсаторы устанавливаются у неподвижной опоры. Сальниковые комп. запрещается устанавливать на криволинейных участках. 6. Арматура устанавливается между опорой и сальниковым комп.

Приветствую Вас, дорогие и уважаемые читатели сайта “сайт”. Схема тепловой сети определяется наличием источника теплоснабжения, их тепловой мощностью, а также размещением источников теплоснабжения относительно потребителей теплоты. Также выбор схем тепловых сетей зависит от величин тепловых нагрузок потребителей теплоты, от характера тепловых потребителей и от вида теплоносителя. Схема тепловой сети должна обеспечивать надежность подачи теплоты и точность ее распределения между потребителями. Протяженность тепловой сети должна быть минимальна, а конфигурация должна быть по возможности простой и экономична в эксплуатации.

Наиболее простой и часто применяемой является радиальная схема (тупиковая) тепловой сети.

Принципиальная схема радиальная

1 – потребители теплоты

2 – тепловые сети

3 – источник теплоснабжения (котельная, ТЭЦ)

Радиальные тепловые сети характеризуются постепенным уменьшением диаметров трубопровода по мере удаления от источника теплоснабжения и снижения расхода сетевой воды. На трубопроводах тепловых сетей размещаются секционирующие задвижки на расстоянии от 1000 до 1500 м друг от друга. Секционирующие задвижки также устанавливаются на ответвлениях потребителей теплоты. Назначение секционирующей задвижки – это локализация места аварии тепловой сети и отключение потребителей. Радиальные тепловые сети наиболее просты и требуют больших капитальных и эксплуатационных затрат.

Главный недостаток радиальных тепловых сетей – отсутствие резервирования, т.е. при аварии на одном из участков, например, на схеме участок “Б-Г”, прекращается подача теплоты всем потребителям, расположенным после точки (участка) ”Г”.

Повышение надежности радиальных тепловых сетей возможны следующими методами:

  1. Совместная работа нескольких источников теплоснабжения на общую радиальную тепловую сеть.
  2. Резервирование отдельных элементов радиальной тепловой сети (4 вместо 1 подающего трубопровода, который рассчитан на пропуск 100% расхода сетевой можно проложить 2 трубопровода, каждый из которых рассчитан на пропуск 50% расхода сетевой воды).
  3. Использование технических мероприятий, повышающих вероятность безотказной работы отдельных элементов тепловой сети (например, антикоррозионная защита трубопроводов, использование стальной запорной арматуры вместо чугунной).
  4. Установка дублирующих перемычек между тепловыми сетями соседних районов.
  5. Использование щадящего режима при работе радиальной тепловой сети (например, работа систем теплоснабжения на пониженных температурных графиках τ 01 <=90 0 C, τ 02 <=60 0 C).

Однако повышение надежности радиальных тепловых сетей приводит к их значительному удорожанию и должно быть обосновано технико-экономическим расчетом.

Непрерывность подачи теплоты потребителям достаточно хорошо обеспечивается кольцевой схемой тепловой сети.

В кольцевых тепловых сетях предусматривается прокладка дублирующих магистральных участков (”А-А’-Г’-Е’-Ж”), а также предусматривается прокладка перемычек (например, ”В-В’; Г-Г’; Д-Д’; Е-Е’ ”). И в случае аварии на одном из участков потребитель будет получать тепловую энергию по дублирующей магистрали участкам через перемычки.

Кольцевание повышает надежность тепловых сетей, но приводит к значительному увеличению капитальных и эксплуатационных затрат. Выбор схема тепловой сети определяется технико-экономическим обоснованием с обязательным учетом надежности обеспечения потребителей тепловой энергией.

Потребители теплоты по надежности теплоснабжения разделяются на 3 категории:

  1. Потребители недопускающие перерыва подачи требуемого количества теплоты и недопускающие снижения температуры внутреннего воздуха в помещениях зданий (больницы, родильные дома, детские-дошкольные учреждения с круглосуточным пребыванием детей, галереи, шахты и т.д.).
  2. Потребители, допускающие снижение температуру внутреннего воздуха на период ликвидации аварии. Допустимое снижение температуру внутреннего воздуха на период ликвидации аварии составляет для жилых, общественных, административно-бытовых зданий до 12 0 С, для промышленных зданий до 8 0 С.
  3. Все остальные потребители теплоты (склады, гаражи, хранилища).

При авариях на тепловых сетях или на источнике теплоснабжения снижение подачи теплоты потребителям 2 и 3 категории приведено в таблице.

Допустимое снижение подачи теплоты потребителям 2 и 3 категории при аварийном режиме теплоснабжения

Расчетное время ликвидации аварии и полного восстановления теплоснабжения составляет от 15 до 54 часов (в зависимости от места возникновения аварии и сложности повреждения).

Согласно СНиП 41-02-2003 ”Тепловые сети”. Все тепловые сети населенных пунктов и промышленных предприятий подразделяются на:

  1. магистральные тепловые сети – предназначены для транспортировки теплоносителя от источников теплоснабжения до вводов в жилые районы или до вводов на территорию промышленных предприятий.
  2. распределительные тепловые сети – предназначены для транспортировки теплоносителя от магистральных тепловых сетей до тепловых пунктов жилых районов или промышленных предприятий.
  3. квартальные тепловые сети или межцеховые тепловые сети – предназначены для транспортировки теплоносителя от тепловых пунктов до зданий жилых районов или цехов промышленных предприятий.

Принципиальные схемы магистральной, распределительной и квартальной тепловых сетей.

1 — потребители теплоты (здания)

2 – источники теплоснабжения

3 – участки магистральной тепловой сети

4 – распределительные тепловые сети

5 – квартальные тепловые сети

6 – центральные тепловые пункты

Принципиальная схема тепловых сетей с индивидуальными тепловыми пунктами

На рисунках приведены схемы радиальная магистральная распределительная и квартальная тепловых сетей для 2-х жилых районов при наличии 2-х источников теплоснабжения.

Для каждого жилого района предусматривается подача теплоты от любого источника теплоснабжения (посредством переключения задвижек на магистральной и распределительной тепловых сетях). Магистральные тепловые сети и распределительные тепловые сети транспортируют теплоноситель для всех видов теплового потребления, т.е. в одном трубопроводе находится сетевая вода и для отопления, и для вентиляции, и для горячего водоснабжения и возможно даже для технологических нужд потребителей теплоты.

Магистральные тепловые сети и распределительные тепловые сети прокладываются, как правило, 2-х трубными, квартальные и межцеховые сети транспортируют теплоноситель для каждого вида теплового потреблении по отдельности, т.е. отдельно прокладываются сети для отопления (так называемые отопительные тепловые сети), отдельно прокладываются сети для горячего водоснабжения (сети горячего водоснабжения), также на промышленных предприятиях могут прокладываться сети для покрытия технологической тепловой нагрузки.

Квартальные и межцеховые тепловые сети прокладываются либо 4-х трубные, либо много трубные, при наличии жилых районов или на промышленных предприятиях, индивидуальных тепловых пунктах практически стираются отличия между распределительными и квартальными тепловыми сетями, т.е. распределительные тепловые сети в этом случае прокладываются в самих жилых кварталах, или между цехами в промышленных предприятиях.

Тепловая сеть– это совокупность трубопроводов и устройств, обеспе-

чивающих по­средством теплоносителя (горячей воды или пара) транспортировку теплоты от источника теплоснабжения к потребителям.

Конструкционно тепловая сеть включает трубопроводы с теплоизоляцией и компенсаторами, устройства для укладки и закрепления трубопроводов, а так же запорную или регулирующую арматуру.

Выбор теплоносителя определяется анализом его положительных и отрицательных свойств. Основные преимущества водяной системы теплоснабжения: высокая аккумулирующая способность воды; возможность транспортировки на большие расстояния; по сравнению с паром меньшие потери тепла при транспортировке; возможность регулирования тепловой нагрузки путем изменения температуры или гидравлического режима. Основной недостаток водяных систем – это большой расход энергии на перемещение теплоносителя в системе. Кроме того, использование воды в качестве теплоносителя, возникает необходимость в специальной ее подготовке. При подготовке в ней нормируются показатели карбонатной жесткости, содержание кислорода, содержание железа и pH. Водяные тепловые сети обычно применяются для удовлетворения отопительно – вентиляционной нагрузки, нагрузки горячего водоснабжения и технологической нагрузки малого потенциала (температура ниже 100 0 С).

Преимущества пара как теплоносителя следующие: малые потери энергии при движении в каналах; интенсивная теплоотдача при конденсации в тепловых приборах; в высокопотенциальных технологических нагрузках пар можно использовать с высокими температурой и давлением. Недостаток: эксплуатация паровых систем теплоснабжения требует соблюдения особых мер безопасности.

Схема тепловой сети определяется следующими факторами: размеще­нием источника теплоснабжения по отношению к району теплового потреб­ления, характером тепловой нагрузки потребителей, видом теплоносителя и принципом его использования.

Тепловые сети подразделяются на:

Магистральные,прокладываемые по главным направлениям объектов теплопотребления;

Распределительные,которые расположены между магистральными тепловыми сетями и узлами ответвления;

Ответвления тепловых сетей к отдельным потребителям (зданиям).

Схемы тепловых сетей применяют, как правило, лучевые, рис. 5.1. От ТЭЦ или котельной 4 по лучевым магистралям 1 теплоноситель поступает к потребителю теплоты 2. С целью резервного обеспечения теплотой потре бителей лучевые магистрали соединяются перемычками 3.

Радиус действия водяных сетей теплоснабжения достигает

12 км. При небольших протяженностях магистралей, что характерно для сельских тепловых сетей, применяют радиальную схему с постоянным уменьшением диаметра труб по мере удаления от источника теплоснабжения.

Укладка тепловых сетей может быть надземной (воздушной) и подземной.

Надземная укладка труб (на

отдельно стоящих мачтах или эстакадах, на бетонных блоках и применяется на территориях предприятий, при сооружении тепловых сетей вне черты города при пересечении оврагов и т.д.

В сельских населенных пунктах наземная прокладка может быть на низких опорах и опорах средней высоты. Этот способ при- меним при температуре тепло-

носителя не более 115 0 С. Подземная прокладка наиболее распространена. Различают канальную и бесканальную прокладку. На рис. 5.2 изображена канальная прокладка. При канальной прокладке, изоляционная конст­рукция трубопроводов разгружена от внешних нагрузок засыпки. При беска­нальной прокладке (см. рис. 5.3) трубопроводы 2 укладывают на опоры 3 (гравийные

или песчаные подушки, деревян- ные бруски и другое).

Засыпка 1, в качестве которой используют: гравий, крупнозернистый песок, фрезерный торф, керамзит и т.п., служит защитой от внешних повреждений и одновременно снижает теплопотери. При канальной прокладке температура теплоносителя может достигать 180 °С. Для тепловых сетей, чаще всего используют стальные трубы диаметром от 25 до 400 мм. С целью предотвращения разрушения металлических труб вследствие температурной деформации по длине всего трубопровода через определенные расстояния устанавливаются к о м п е н с а т о р ы.

Различные конструктивные выполнения компенсаторов приведены на рис. 5.4.

Рис. 5.4. Компенсаторы:

а – П-образный; б – лирообразный; в – сальниковый; г – линзовый

Компенсаторы вида а (П-образный) и б (лирообразный) называют радиальными. В них изменение длины трубы компенсируется деформацией материала в изгибах. В сальниковых компенсаторах в возможно скольжение трубы в трубе. Втаких компенсаторах возникает потребность в надежной конструкции уплотнения. Компенсатор г – линзового типа выбирает изменение длины за счет пружинящего действия линз. Большие перспективы у с и л ь ф о н н ы х компенсаторов. Сильфон – тонкостенная гофрированная оболочка, позволяющая воспринимать различные перемещения в осевом, поперечном и угловом направлениях, снижать уровень вибраций и компенсировать несоосность.

Трубы укладываются на специальные опора двух типов: свободные и неподвижные. Свободные опоры обеспечивают перемещение труб при температурных деформациях. Неподвижные опоры фиксируют положение труб на определенных участках. Расстояние между неподвижными опорами зависит от диаметра трубы, так, например, при D = 100 мм L= 65 м; при D = 200 мм L = 95 м. Между неподвижных опор под трубы с компенсаторами устанавливают 2…3 подвижных опоры.

В настоящее время вместо металлических труб, требующих серьезной защиты от коррозии, начали широко внедряться пластиковые трубы. Промышленность многих стран выпускает большой ассортимент труб из поли-мерных материалов (полипропилена, полиолефена); труб металлопластиковых; труб, изготовленных намоткой нити из графита, базальта, стекла.

На магистральных и распределительных тепловых сетях укладывают трубы с теплоизоляцией, нанесенной индустриальным способом. Для теплоизоляции пластиковых труб предпочтительнее использовать полимеризующиеся материалы: пенополиуретан, пенополистерол и др. Для металлических труб используют битумоперлитовую или фенольнопоропластовую изоляцию.

5.2. Тепловые пункты

Тепловой пункт – это комплекс устройств, расположенных в обособленном помещении, состоящих из теплообменных аппаратов и элементов теплотехнического оборудования.

Тепловые пункты обеспечивают присоединения теплопотребляющих объектов к тепловой сети. Основной задачей ТП является:

– трансформация тепловой энергии;

– распределение теплоносителя по системам теплопотребления;

– контроль и регулирование параметров теплоносителя;

– учета расходов теплоносителей и теплоты;

– отключение систем теплопотребления;

– защита систем теплопотребления от аварийного повышения параметров теплоносителя.

Тепловые пункты подразделяются по наличию тепловых сетей после них на: центральные тепловые пункты (ЦТП) и индивидуальные тепловые пункты (ИТП). К ЦТП присоединяются два и более объекта теплопотребления. ИТП подсоединяет тепловую сеть к одному объекту или его части. По размещению тепловые пункты могут быть отдельно стоящие, пристроенные к зданиям и сооружениям и встроенные в здания и сооружения.

На рис. 5.5 приведена типичная схема систем ИТП, обеспечивающего отопление и горячее водоснабжение отдельного объекта.

Из тепловой сети к запорным кранам теплового пункта подведены две трубы: п о д а ю щ а я (поступает высокотемпературный теплоноситель) и

о б р а т н а я (отводится охлажденный теплоноситель). Параметры теплоносителя в подающем трубопроводе: для воды (давление до 2,5 МПа, температура – не выше 200 0 С), для пара (р t 0 C). Внутри теплового пункта установлены как минимум два теплообменных аппарата рекуперативного типа (кожухотрубные или пластинчатые). Один обеспечивает трансформацию теплоты в систему отопления объекта, другой – в систему горячего водоснабжения. Как в ту, так и в другую системы перед теплообменниками вмонтированы приборы контроля и регулирования параметров и подачи теплоносителя, что позволяет вести автоматический учет потребляемой теплоты. Для системы отопления вода в теплообменнике нагревается максимум до 95 0 С и циркуляционным насосом прокачивается через нагревательные приборы. Циркуляционные насосы (один рабочий, другой резервный) устанавливаются на обратном трубопроводе. Для горячего водоснаб-

жения вода, прокачиваемая через теплообменник циркуляционным насосом, нагревается до 60 0 С и подается потребителю. Расход воды компенсируется в теплообменник из системы холодного водоснабжения. Для учета теплоты, затраченной на нагрев воды, и ее расхода устанавливаются соответствующие датчики и регистрирующие приборы.

В начальной стадии развития централизованного теплоснабжения им были охвачены только существующие капитальные и отдельно строящиеся здания в зонах действия источника тепла. Подача тепла потребителям осуществлялась через тепловые вводы предусматриваемые в помещениях домовых котельных. В дальнейшем с развитием централизованного теплоснабжения особенно в районах нового строительства резко возросло количество абонентов присоединяемых к одному источнику тепла. Появилось значительное количество как ЦТП так и МТП у одного источника тепла в...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


СХЕМЫ ТЕПЛОСНАБЖЕНИЯ И ИХ КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Тепловые сети от источника до потребителя в зависимости от назначения делятся на участки, называемые: магистральными, распределительными (крупные ответвления) и ответвления к зданиям. Задачей централизованного теплоснабжения является максимальное удовлетворение тепловой энергией всех нужд потребителей, включая отопление, вентиляцию, горячее водоснабжение и технологические нужды. При этом учитывается одновременное действие устройств с требуемыми различными параметрами теплоносителя. В связи с увеличением радиуса действия и количества обслуживаемых абонентов возникают новые, более сложные задачи по обеспечению потребителей теплоносителем необходимого качества и заданных параметров. Решение этих задач приводит к постоянному совершенствованию схемы теплоснабжения, тепловых вводов в здания и конструкций тепловых сетей.

В начальной стадии развития централизованного теплоснабжения им были охвачены только существующие капитальные и отдельно строящиеся здания в зонах действия источника тепла. Подача тепла потребителям осуществлялась через тепловые вводы, предусматриваемые в помещениях домовых котельных. Эти котельные были расположены, как правило, непосредственно в отапливаемых зданиях или рядом с ними. Такие тепловые вводы стали называть местными (индивидуальными) тепловыми пунктами (МТП). В дальнейшем с развитием централизованного теплоснабжения, особенно в районах нового строительства, резко возросло количество абонентов, присоединяемых к одному источнику тепла. Возникли сложности в обеспечении некоторых потребителей заданным количеством теплоносителя. Тепловые сети становились неуправляемыми. Для устранения трудностей, связанных с регулированием режима работы тепловых сетей, в этих районах на группу зданий были созданы центральные тепловые пункты (ЦТП), расположенные в отдельно стоящих сооружениях. Размещение ЦТП в отдельных сооружениях было вызвано необходимостью устранения в зданиях шума, возникающего при работе насосных установок, особенно в зданиях массового строительства (блочных и панельных).

Наличие ЦТП в системах централизованного теплоснабжения крупных объектов в какой-то мере упростило регулирование, но полностью не решило поставленной задачи. Появилось значительное количество как ЦТП, так и МТП у одного источника тепла, в связи с чем осложнилось регулирование отпуска тепла системой. К тому же создание ЦТП в районах старой застройки практически не представлялось возможным. Таким образом, находятся в эксплуатации МТП и ЦТП.

Технико-экономическое сравнение показывает, что эти схемы примерно равноценны. Недостаток схемы с МТП — большое количество водоподогрева- телей, в схеме с ЦТП — перерасход дефицитных оцинкованных труб для горячего водоснабжения и частая их замена из-за отсутствия надежных способов защиты от коррозии.

Следует отметить, что с увеличением мощности ЦТП экономичность этой схемы повышается. ЦТП обеспечивает в среднем только по девять зданий. Однако увеличение мощности ЦТП не решает проблему защиты трубопроводов горячего водоснабжения от коррозии.

В связи с разработкой в последнее время новых схем абонентских вводов и изготовлением бесшумных бесфундаментных насосов стало возможным централизованное теплоснабжение зданий через МТП. Управляемость протяженных и разветвленных тепловых сетей при этом достигается путем обеспечения в отдельных секциях стабильного гидравлического режима. Для этой цели на крупных ответвлениях предусматривают контрольно-распределительные пункты (КРП), которые оснащают необходимым оборудованием и контрольно-измерительными приборами.

Схемы тепловых сетей . В городах тепловые сети выполняют по следующим схемам: тупиковой (радиальной)—как правило, при наличии одного источника тепла, кольцевой—при наличии нескольких источников тепла и смешанной.

Тупиковая схема (рис,а) характеризуется тем, что по мере удаления от источника тепла постепенно снижается тепловая нагрузка и соответственно уменьшаются диаметры трубопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях. Для повышения надежности обеспечения потребителей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, если мощность магистралей 350 МВт и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного снабжения теплом в количестве не менее 70% расчетного расхода.

Перемычки предусматривают также и между тупиковыми схемами при теплоснабжении района от нескольких источников тепла: ТЭЦ, районных и квартальных котельных 4. В таких случаях наряду с повышением надежности теплоснабжения появляется возможность в летний период с помощью одной или двух котельных, работающих на нормальном режиме, отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (рис.

  1. 1, а) предусмотрены контрольно-распределительные пункты 5.

Кольцевая схема (рис. б) применяется в крупных городах и для теплоснабжения предприятий, не допускающих перерыва в подаче тепла. Она имеет существенное преимущество по сравнению с тупиковой—несколько источников повышают надежность теплоснабжения, при этом необходима меньшая суммарная резервная мощность котельного оборудования. Увеличение стоимости, связанное с сооружением кольцевой магистрали, приводит к снижению капитальных затрат на строительство источников тёпла. Кольцевая магистраль 1 (рис.,б) снабжается теплом от четырех ТЭЦ. Потребители 2 получают тепло от центральных тепловых пунктов 6, присоединенных к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены контрольно-распределительные пункты 5. Промышленные предприятия 7 также присоединены по тупиковой схеме через КРП.

Рис. Схемы тепловых сетей

а — тупиковая радиальная; б — кольцевая

Другие похожие работы, которые могут вас заинтересовать.вшм>

229. СТАТИЧЕСКИЕ И КОНСТРУКТИВНЫЕ СХЕМЫ РАМ 10.96 KB
Рамные конструкции СТАТИЧЕСКИЕ И КОНСТРУКТИВНЫЕ СХЕМЫ РАМ Рамы представляют собой плоские конструкции состоящие из прямолинейных ломаных или криволинейных пролетных элементов называемых ригелями рамы и жестко связанных с ними вертикальных или наклонных элементов называемых стойками рамы. Такие рамы целесообразно проектировать при пролетах более 60 м однако они могут успешно конкурировать с фермами и балками при пролетах 24 60 м. В статическом отношении рамы могут быть трехшарнирными двухшарнирными и бесшарнирными рис. Трехшарнирные...
2261. КОНСТРУКТИВНЫЕ И СИЛОВЫЕ СХЕМЫ НАЗЕМНЫХ ГТД 908.48 KB
Одновальные ГТД Одновальная схема является классической для наземных ГТД и применяется во всем диапазоне мощности от 30 кВт до 350 МВт. По одновальной схеме могут быть выполнены ГТД простого и сложного циклов в том числе и парогазовые установки ПГУ. Конструктивно одновальный наземный ГТД аналогичен одновальным авиационным ТВД и вертолетным ГТД и включает компрессор КС и турбину рис.
230. СТАТИЧЕСКИЕ И КОНСТРУКТИВНЫЕ СХЕМЫ АРОК 9.55 KB
По статической схеме арки подразделяют на трехшарнирные двухшарнирные и бесшарнирные рис. Двухшарнирные арки менее чувствительны к температурным и деформационным воздействиям чем бесшарнирные и обладают большей жесткостью чем трехшарнирные арки. Двухшарнирные арки достаточно экономичны по расходу материала просты в изготовлении и монтаже и благодаря этим качествам находят преимущественное применение в зданиях и сооружениях. В арках загруженных равномерно распределенной...
12706. Разработка системы теплоснабжения жилого микрорайона в г.Москве, обеспечивающая бесперебойную подачу тепла всем объектам 390.97 KB
Исходные данные для проектирования. Расчет компенсаторов для главной магистрали. Промышленные предприятия получают пар для технологических нужд и горячую воду как для технологии так и для отопления и вентиляции. Производства тепла для промышленных предприятий требует больших затрат топлива...
12155. Модель определения оптимальных вариантов согласованной тарифной политики электроснабжения, теплоснабжения, водоснабжения и отведения загрязненных вод на долгосрочных производственных периодах 16.98 KB
Построена модель предназначенная для определения оптимальных вариантов распределения ограниченных объемов электрической и тепловой энергии водных ресурсов и такого распределения квот на отведение загрязненных вод при котором сбросы загрязненных вод в поверхностные водные объекты ограничены величиной ассимиляционного потенциала этих водных объектов. На основе этой модели разработана модель определения оптимальных вариантов согласованной тарифной политики электроснабжения теплоснабжения водоснабжения и отведения загрязненных вод....
14723. Конструктивные системы многоэтажных зданий 66.8 KB
Архитектурные конструкции многоэтажных зданий Общие требования предъявляемые к многоэтажным зданиям Многоэтажные жилые здания – жилые здания от 6 до9 этажей; здания повышенной этажности – от 10 до 25 этажей. По требованию к необходимому минимальному количеству лифтов в зависимости от этажности: Здания 6 – 9 этажей требуют наличия 1 лифта; здания 10 – 19 этажей. 2 лифтов; здания 20 – 25 этажей. В соответствии с Федеральным законом Российской Федерации от 2009 № 384ФЗ Технический регламент о безопасности зданий и...
2375. ДОРОЖНАЯ ОДЕЖДА. КОНСТРУКТИВНЫЕ РЕШЕНИЯ 1.05 MB
Определенные особенности связаны лишь с устройством слоев непосредственно контактирующих с прослойкой и введением дополнительной операции по укладке геосетки. Последняя операция ввиду технологичности геосетки удобной формой их поставки не сдерживает строительный поток. В связи с этим принимаемая длина захватки не связана обычно с укладкой геосетки но желательно соблюдать кратность длины захватки длине материала в рулоне. Армирование асфальтобетонных покрытий рекомендуется производить путем устройства прослойки из геосетки ССНПХАЙВЕЙ...
2191. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ВОЗДУШНЫХ ЛИНИЙ СВЯЗИ 1.05 MB
Опоры воздушных линий связи должны обладать достаточной механической прочностью сравнительно продолжительным сроком службы быть относительно легкими транспортабельными и экономичными. До последнего времени на воздушных линиях связи применялись опоры из деревянных столбов. Затем начали широко применяться железобетонные опоры.
6666. Аналоговые схемы на ОУ 224.41 KB
При анализе аналоговых схем ОУ представляется идеальным усилителем, имеющим бесконечно большие значения входного сопротивления и коэффициента усиления, а выходное сопротивление - нулевое. Основным преимуществом аналоговых устройств
6658. Схемы замещения биполярного транзистора 21.24 KB
Схемы замещения биполярного транзистора При расчетах электрических цепей с транзисторами реальный прибор заменяется схемой замещения которая может быть либо бесструктурной либо структурной. Поскольку электрический режим биполярного транзистора в схеме ОЭ определяется входным током...

Принятая схема тепловых сетей в значительной мере определяет надежность теплоснабжения, маневренность системы, удобство ее эксплуатации и экономическую эффективность. Принципы построения крупных систем теплоснабжения от нескольких источников тепла, средних и мелких систем существенно отличаются.

Крупные и средние системы должны иметь иерархическое построе­ние. Высший уровень составляют магистральные сети, соединяющие источники тепла с крупными тепловыми узлами - районными тепловы­ми пунктами (РТП), которые распределяют теплоноситель по сетям низшего уровня и обеспечивают в них автономные гидравлический и температурный режимы. Необходимость строгого расчленения тепловых сетей на магистрали и распределительные сети отмечается в ряде работ . Низший иерархический уровень составляют распределительные сети, которые транспортируют теплоноситель в групповые или индиви­дуальные тепловые пункты.

Распределительные сети присоединяют к магистральным в РТП через водоводяные подогреватели или непосредственно с установкой смесительных циркуляционных насосов. В случае присоединения через водоводяные подогреватели гидравлические режимы магистральных и распределительных сетей полностью разобщаются, что делает систему надежной, гибкой и маневренной. Жесткие требования к уровням дав­ления в магистральных теплопроводах, выдвигаемые потребителями, здесь снимаются. Остаются лишь требования непревышения давления, определяемого прочностью элементов тепловой сети, невскипания теплоносителя в подающем трубопроводе и обеспечения необходимого располагаемого напора перед водоподогревателями. В сеть высшего иерархического уровня теплоноситель может подаваться из различных источников с различными температурами, но при условии, чтобы они превышали температуру в распределительных сетях. Параллельная ра­бота всех источников тепла на объединенную магистральную сеть по­зволяет наилучшим образом распределять нагрузку между ними в целях экономии топлива, обеспечивает резервирование источников и позволяет, сократить их суммарную мощность. Закольцованная сеть повышает надежность теплоснабжения и обеспечивает подачу тепла потребителям при отказах отдельных ее элементов. Наличие несколь­ких источников питания кольцевой сети сокращает необходимый резерв ее пропускной способности.

В системе теплоснабжения с насосами в РТП отсутствует полная гидравлическая изоляция магистральных сетей от распределительных. Для больших систем с протяженными закольцованными магистральны­ми теплопроводами"и несколькими источниками питания задачу управ­ления гидравлическим режимом. сети при соблюдении ограничений в давлениях, предъявляемых потребителями, можно решить лишь при оснащении РТП современной автоматикой. Эти системы также позво­ляют поддерживать независимый циркуляционный режим теплоноси­теля в распределительных сетях и температурный режим, отличный от температурного режима в магистралях. В результате установки регу­ляторов давления на подающей и обратной линиях можно обеспечить в них пониженный уровень давления.

На рис. 6.1 показана однолинейная принципиальная схема большой системы теплоснабжения, которая имеет два иерархических уровня тепловых сетей. Высший уровень системы представлен кольцевой магистральной сетью с ответвлениями к РТП. От РТП идут распреде­лительные сети, к Которым присоединены потребители. Эти сети состав­ляют низший уровень. К магистральной сети потребителей не присоединяют. Теплоноситель в магистральную сеть поступает от двух ТЭЦ. Система имеет резервный источник тепла - районную котельную (РК). Схема может быть выполнена с одним видом присоединения рас­пределительных сетей к РТП (рис. 6.1,6 или в) или комбинированной с двумя видами.

У систем с двумя иерархическими уровнями резервируют только высший уровень. Надежность теплоснабжения обеспечивается выбором такой мощности РТП, при которой надежность нерезервированной (ту­пиковой) сети оказывается достаточной. Принятый уровень надежности определяет протяженность и максимальные диаметры распределитель­ной сети от каждого РТП. На высшем уровне резервируют и источники тепла, и теплопроводы. Резервирование осуществляют путем соедине­ния подающих и обратных магистралей соответственными перемычка­ми. Различают два вида перемычек (см. рис. 6.1). Одни из них резервируют сеть, "обеспечивая ее надежное функционирование при отказах участков теплопроводов, задвижек или другого сети. Другие резервируют источники тепла, обеспечивая переток тепло­носителя из зоны одного источника в зону другого при его отказах или ремонте. Тепломагистрали вместе с перемычками образуют единую кольцевую сеть. Диаметры всех теплопроводов этой сети, включая диаметры перемычек, должны быть рассчитаны на пропуск необходи­мого количества теплоносителя в самых неблагоприятных аварийных ситуациях. В нормальном режиме теплоноситель движется по всем теплопроводам системы и понятие кольцующей «перемычки» теряет смысл, тем более, что при переменных гидравлических режимах точки схода потоков могут перемещаться, и роль «перемычки» будут выпол­нять различные участки сети. Поскольку резервные элементы тепловой сети всегда находятся в работе, такое резервирование называется на­груженным.

Системы с нагруженным резервом имеют эксплуатационный недо­статок, заключающийся в том, что при возникновении аварии обнару­жить магистраль, на которой она произошла, представляет большие трудности, ибо все магистрали объединены в общую сеть.

Сохраняя принцип иерархического построения системы теплоснаб­жения, можно применить другой метод ее резервирования, используя
ненагруженный резерв. В этом случае перемычки, обеспечивающие ре­зервирование источников тепла, в нормальном режиме отключены и не работают. Здесь следует отметить, что поскольку в основу принципа построения схемы системы положена иерархичность и высший и низший уровень разделяются крупными тепловыми узлами, потребителей к перемычкам не присоединяют, независимо от того, являются они на­груженным или ненагруженным резервом. Каждая ТЭЦ обеспечивает теплоснабжение своей зоны. При ситуациях, когда возникает необхо­димость резервирования одного источника другим, в работу включа­ются резервные перемычки.

При использовании принципа ненагруженного резервирования коль­цевание сетей для обеспечения надежности теплоснабжения при отка­зах элементов теплосети можно осуществлять однотрубными перемыч­ками, как это было предложено в МИСИ им. В. В. Куйбышева. В местах присоединения перемычек к теплопроводам располагаются узлы, позволяющие переключать перемычки на подающую или обрат­ную лрнии в зависимости от того, на которой из них произошла авария (вероятность одновременного отказа двух элементов ничтожно мала).

Применение однотрубных перемычек позволяет существенно снизить дополнительные капитальные вложения в резервирование. При нор­мальном режиме сеть работает как тупиковая, т. е. каждая магистраль имеет определенный круг потребителей и независимый гидравлический режим. При аварийных ситуациях включаются необходимые резервные пер. емычки. При ненагруженном резервировании, так же как и при на­груженном, диаметры всех теплопроводов, включая перемычки, рассчи­тывают на пропуск необходимого количества теплоносителя при наи­более напряженных гидравлических режимах в аварийных ситуациях. Принципиальная схема сохраняется и может быть иллюстрирована рис. 6.1. Отличие от схемы с нагруженным резервированием состоит в том, что перемычки 3 выполняются однотрубными. Эксплуатация систе­мы осуществляется с закрытыми задвижками на всех перемычках 3 и 4. Такой режим эксплуатации удобнее, так как при независимых гид­равлических режимах магистралей легче контролировать их состояние. Кроме того, применение ненагруженного резерва - однотрубных пере­мычек- дает существенный экономический эффект.

Для обеспечения надежного и качественного теплоснабжения иерар­хического построения схемы и резервирования еще недостаточно. Не­обходимо обеспечить управляемость системы. Следует различать два вида управления системой. Первый вид обеспечивает эффективность теплоснабжения при нормальной эксплуатации, второй вид позволяет осуществлять лимитированное теплоснабжение потребителей при ава­рийных гидравлических режимах.

Под управляемостью системы в процессе эксплуатации понимают свойство системы, позволяющее менять гидравлические и температур­ные режимы в соответствии с изменяющимися условиями. Для возмож­ности управления гидравлическим и температурным режимами систе­ма должна иметь тепловые пункты, оснащенные автоматикой и уст­ройствами. позволяющими осуществлять автономные циркуляционные режимы в распределительных сетях. В наилучшей степени требовани­ям управляемости отвечают системы с иерархическим построением и РТП. РТП с, насосным присоединением распределительных сетей обо­рудуют регуляторами давления, которые поддерживают постоянное давление в обратной линии и постоянный перепад давлений между по­дающей и обратной линиями после РТП. Циркуляционные насосы поз­воляют поддерживать располагаемый перепад давлений после РТП постоянным при сниженном расходе воды во внешней сети, а также снижать температуру в сетях за РТП путем подмешивания воды из обратной линии. РТП оборудуют автоматикой, позволяющей отсекать их от магистральных теплопроводов при авариях в распределительных сетях. РТП присоединяют к магистралям с двух сторон секционирую­щей задвижки. Это обеспечивает питание РТП при аварии на одном из участков. Секционирующие задвижки на магистралях устанавлива­ют примерно через 1 км. Если РТП присоединять с двух сторон каждой задвижки, то для магистралей с начальным диаметром 1200 мм нагруз­ка РТП составит примерно 46 000 кВт (40 Гкал/ч). В новых планиро­вочных решениях городов основным градостроительным элементом яв­ляется микрорайон с тепловой нагрузкой 11 000-35 000 кВт (10- 30 Гкал/ч). Целесообразно создавать крупные РТП из расчета обеспе­чения теплоснабжения одного или нескольких микрорайонов. В этом случае тепловая нагрузка РТП будет составлять 35 000-70 000 кВт (30-60 Гкал/ч) :

Другой способ присоединения распределительных сетей к маги­страли - ч^рез теплообменники, располагаемые в РТП, не требует оснащения РТП большим количеством автоматических устройств, так как гидравлически магистральные и распределительные сети разобщены. Такой способ особенно целесообразно применять при сложном рельефе местности и наличии зон с пониженными геодези­ческими отметками. Выбор способа следует осуществлять на основа­нии технико-экономического расчета.

Задача управления аварийным гидравлическим режимом возни­кает при расчете теплопроводов на пропуск лимитированного количе­ства теплоносителя при авариях.

Учитывая относительно малую продолжительность аварийных ситуаций на тепловых сетях и значительную теплоаккумулирующую способность зданий, в МИСИ им. В. В. Куйбышева был разработан принцип обоснования резерва пропускной способности тепловых се­тей исходя из лимитированного (пониженного) теплоснабжение по­требителей в период аварийных ремонтов на сетях. Этот принцип позволяет существенно сократить дополнительные капитальные вло­жения - в резервирование. Для практической реализации лимитиро­ванного теплоснабжения система должна быть управляемой при пе­реходе на аварийный гидравлический режим. Иначе говоря, потреби­тели должны отбирать из сети наперед заданные (лимитированные) количества теплоносителя. Для этого целесообразно на каждом вво­де в тепловой узел на байпасе устанавливать регулятор - ограничи­тель расхода. При возникновении аварийного режима подача тепло­носителя потребителям переключается на байпас. Блоки таких регу­ляторов следует устанавливать на вводе в РТП. Если РТП оборуду­ют регуляторами расхода, позволяющими осуществлять дистанционную перенастройку, тогда они могут выполнять роль регуляторов - ограни­чителей расхода.

Если аварийным гидравлическим режимом не управлять, тогда резерв пропускной способности сетей должен быть рассчитан на 100%-вый расход теплоносителя при авариях, что приведет к необос­нованному перерасходу металла.

Практическое осуществление управления эксплуатационными и аварийными режимами возможно лишь при наличии телемеханиза­ции. Телемеханизация должна обеспечить контроль параметров, сиг­нализацию о состоянии оборудования, управление насосами и за­движками, регулирование расхода сетевой воды.

Выше были рассмотрены оптимальные схемы современных боль­ших систем теплоснабжения. Небольшие системы теплоснабжения с нагрузкой, примерно соответствующей нагрузкам РТП, проектируют
нерезервированными. Сети выпол­няют тупиковыми разветвленными. С ростом мощности источника теп­ла возникает необходимость в ре­зервировании головной части теп­ловой сети.

Управляемые системы с иерархи­ческим построением являются со­временными прогрессивными систе­мами. Однако строящихся до пос­леднего времени тепловые сети и большинство эксплуатируемых от­носятся к так называемым обезличенным сетям. При таком решении всех потребителей тепла (и крупных, и малых) параллельно при­соединяют к сети, причем и к магистралям, и к распределительным теплопроводам. В результате такого способа присоединения, по су­ществу, теряется различие между магистральными и распределитель­ными сетями. Они представляют собой единую сеть с единым гид­равлическим режимом, отличает их лишь значение диаметра. Такая система не имеет иерархического построения, является неуправляе­мой и для ее резервирования в целях повышения надежности тепло снабжения необходимы значительные капитальные вложения. Из из­ложенного можно сделать вывод, что вновь строящиеся системы теп­лоснабжения должны проектироваться управляемыми с иерархиче­ским построением. При реконструкциях и развитии действующих си­стем также необходимо проектировать РТП и обеспечивать четкое разделение сегей на магистральные и распределительные.

Действующие тепловые сети по их построению можно разделить на два типа: радиальные и кольцевые (рис. 6.2). Радиальные сети являются тупиковыми, нерезервированными и поэтому они Не обеспе­чивают необходимой надежности. Такие сети можно применять для небольших систем, если источник тепла расположен в центре тепла - снабжаемого района.