Режим и техника газовой сварки. Способы и режимы газовой сварки. Основные способы газовой сварки

Включает в себя хорошую подготовку деталей под сварку, выбор нужного способа газовой сварки, выбор режимов газовой сварки (необходимую мощность сварочной горелки), диаметра присадочной проволоки и правильное выполнение техники газовой сварки. Необходимо учесть все эти моменты, чтобы получить хорошее качество сварки.

Диаметр сварочной проволоки выбирают, исходя из толщины свариваемого металла и от выбранного способа сварки. Подробнее о выборе присадочных материалов изложено на странице: "Присадочные материалы для газовой сварки. Выбор сварочной проволоки".

Подготовка сварных кромок для газовой сварки

Подготовка сварных кромок включает в себя их очистку от масляных плёнок, лакокрасочных покрытий, от окалины, от грязи и пыли, ржавчины, а также разделку под сварку и их прихватку короткими швами.

Очистка сварных кромок под газовую сварку

Под газовую сварку выполняют не только очистку самих сварных кромок, но и участков в непосредственной близости от них. Ширина очищаемой зоны составляет 20-30мм с каждой стороны соединения.

Для очистки хорошо подходит пламя сварочной горелки. При нагревании горелкой, окалина отходит от металла, а лакокрасочные покрытия и масло сгорают. После этого поверхность сварных кромок и близлежащих участков тщательно зачищают при помощи металлических щёток или наждачной бумаги. Зачистку производят до появления металлического блеска на свариваемых поверхностях. Часто, для очистки, свариваемые детали подвергают дробеструйной или пескоструйной обработке.

В случае, когда невозможно удалить загрязнения при помощи щёток (например, удаление оксидных плёнок затруднено), сварные кромки и участки возле них очищают при помощи специальных паст на кислотной основе или протравливают в кислоте. После протравки необходимо промыть и высушить кромки.

Разделка кромок под газовую сварку

Сварные кромки разделывают, в зависимости от вида сварного соединения. Вид сварного соединения определяется взаимным расположением соединяемых деталей. Для газовой сварки наиболее характерны стыковые сварные соединения.

Металлы малой толщины (до 2мм) сваривают в стык с отбортовкой кромок и без применения присадочного материала (схема а) на рисунке) или без отбортовки кромок и без зазора (схема б) на рисунке), в таком случае применяют присадочный материал.

Металл, толщиной от 2мм до 5мм сваривают в стык, не разделывая кромки, но оставляя зазор между ними (схема в) на рисунке). При толщине сварного металла более 5мм, применяют V-образную, или X-образную разделку (схема г) на рисунке). Суммарный угол раскрытия кромок должен составлять 70-90° для обеспечения хорошего провара корня сварного шва.

Разделку кромок в свариваемых деталях можно выполнять вручную, пневматическим зубилом, на фрезерных станках, или же на специальных кромкострогальных станках. Но экономически целесообразным способом является кислородная резка (ручная или механизированная). При этом окалину и шлак после резки необходимо зачистить до металлического блеска.

Прихватка кромок свариваемых деталей перед газовой сваркой

Технология газовой сварки предусматривает прихватку деталей перед сваркой для того, чтобы в процессе сварки металла не допустить изменении положения деталей или появления зазоров между ними.

Длина прихваток и расстояние между ними определяются толщиной металла, формой и протяжённостью сварного шва. При сваривании деталей небольшой толщины и при небольшой длине сварного шва, прихватки выполняют длиной 5-7мм на расстоянии 70-100мм друг от друга.

В случае сваривания металла большой толщины и при больших длинах сварных швов, длина прихваток составляет 20-30мм, а рекомендуемое расстояние между прихватками составляет 300-500мм.

Выбор режимов газовой сварки

При выборе режимов газовой сварки руководствуются маркой свариваемого металла или сплава и его толщиной. А также типом и назначением свариваемого изделия. К основным характеристикам режима газовой сварки относятся: мощность сварочной горелки, вид газового пламени, марка и диаметр присадочного прутка или проволоки, способ газовой сварки и техника сварки.

Выбор мощности сварочной горелки

Тепловая мощность сварочной горелки определяется расходом ацетилена, проходящего через неё. Требуемый расход ацетилена можно определить по формуле:

Q=AS, где Q - расход ацетилена, л/ч; S - толщина свариваемого металла, мм; А - коэффициент, который вычисляют опытным путём. При сварке углеродистых сталей коэффициент А=100-130л/(ч*мм); при сварке меди А=150 л/(ч*мм), при сварке алюминия А=75 л/(ч*мм).

Рекомендуемая мощность пламени при правом способе газовой сварки определяется расходом ацетилена 120-150л/ч, а при левом способе сварки расход ацетилена определяют из расчёта 100-130л/ч на миллиметр толщины свариваемого металла.

Необходимо иметь ввиду, что увеличение расхода ацетилена приводит к повышению мощности сварочной горелки. Но при излишней её мощности возникает риск прожога металла. Мощность должна быть оптимальной и это нужно учитывать.

Мощность газового пламени регулируется сменными наконечниками, которые идут в комплекте со сварочными горелками.

Техника газовой сварки. Как варить газовой сваркой?

От правильной техники газовой сварки зависит и , и её производительность. Техника сварки включает в себя и положение сварочной горелки и направление её движения. Далее разберём оба этих момента чтобы понять, как правильно варить газовой сваркой.

Положение сварочной горелки при газовой сварке

Положение определяется её углом наклона по отношению к поверхности свариваемых деталей. На угол наклона мундштука горелки влияет толщина свариваемых деталей и теплопроводность свариваемого металла. При большой толщине металла и при большой его теплопроводности угол наклона горелки рекомендуется увеличивать.

Большой угол наклона горелки позволяет сконцентрировать нагрев металла в одном месте вследствие подачи большого количества теплоты на небольшой участок. Изменение угла наклона горелки позволяет изменять скорость нагрева металла.

На рисунке справа показаны рекомендуемые углы наклона мундштука горелки, в зависимости от свариваемой толщины металла. Рекомендуемые в графике углы даны для . При , особенно при сварке меди и при сварке алюминия рекомендуемый угол следует немного увеличить (примерно, на 15°), т.к. эти металлы обладают высокой теплопроводностью.

В самом начале процесса сварки горелку устанавливают под максимальным углом для того, чтобы обеспечить хороший прогрев металла затем, угол уменьшают до рекомендуемого значения. В конце процесса сварки угол наклона рекомендуется постепенно уменьшать, чтобы более качественно выполнить наплавление кратера и исключить возможные пережоги металла.

Движение газовой горелки при сварке

При , мундштук сварочной горелки в двух направлениях: поперечном (это направление перпендикулярно оси шва) и в продольном (вдоль оси шва). Основным движением сварки является продольное движение. Поперечное движения является вспомогательным, но оно необходимо для того, чтобы равномерно прогреть свариваемые кромки и обеспечить нужную ширину сварного шва.

Способы поперечного перемещения показаны на рисунке слева:

а) движение с отрывом горелки;
б) спиралеобразное перемещение;
в) движение полумесяцем;
г) волнистый способ перемещения.

Наплавление металла с помощью потока газового пламени не получило широкого распространения из-за появления больших . Наплавка газовым пламенем получила применение при наплавке литыми твёрдыми сплавами.

Метод газовой сварки прост, универсален, не требует дополнительного оборудования и используется в заводских условиях, а также при строительно-монтажных и ремонтных работах во всех отраслях народного хозяйства.

Газовая сварка широко применяется для соединения низко и среднеуглеродистых, а также легированных (хромированных, содержание до 0,2% углерода) сталей толщиной до 3 мм. Применение газовой сварки для соединения сталей толщиной свыше 3-4 мм возможно, но нецелесообразно, электродуговые методы более совершенные и производительные.

Перед сваркой детали подвергаются определенной подготовке, что включает следующие операции: очистку свариваемых кромок, разделку кромок под сварку (если это необходимо) и наложение прихваток для соединения свариваемых листов или деталей.

Наложение прихваток необходимо для того, чтобы положение свариваемых деталей и зазор между ними сохранились постоянными в процессе сварки.

Длина прихваток, расстояние между ними и порядок наложения зависят от толщины свариваемого метала и длины шва

Параметры прихвата

Прихватку необходимо произвести на тех же режимах, что и процесс сварки шва, так как непровар в прихватах может привести к браку всего сварного соединения.

К параметрам режима сварки относятся: мощность пламени, диаметр присадочной проволоки, расход присадочного материала, состав пламени.

Выбор режима сватки зависит от теплофизических свойств свариваемого материала, габаритных размеров и форм изделия. Большое влияние на режим сварки оказывает используемый способ сварки (левый, правый) и положение свариваемого шва в пространстве.

Диаметр сварочной проволоки присадочного металла для сварки всех сталей подбирается в зависимости от толщины свариваемого металла и в пределах толщины до 15 мм может быть определен по следующим эмпирическим формулам:

для левого способа сварки

для правого способа сварки

где d − диаметр проволоки, мм; S – толщина металла, мм.

При сварке сталей толщиной более 15 мм диаметр проволоки на практике всегда применяют равный 6−8 мм. Присадочная проволока по своему химическому составу должна быть близка к химическому составу свариваемого металла.

Для предлагаемых в данной работе заданиях сталей рекомендуется выбрать следующие марки проволоки:

для низкоуглеродистых сталей – Cв-08; Cв-08А; Cв-12ГС; Cв-08ГС; Cв-08Г2С;

для среднеуглеродистых сталей – Cв-08ГА; Cв-10ГА; Cв-08ГС;


для легированных сталей:

хромомолибденовые – Cв-08; Cв-08А; Cв-10Г2;

молибденовые – Cв-18ХМА; Cв-19ХМА;

хромистые – Cв 19ХГС; Cв 13ХМА; Cв-08; Св-08А.

Для газовой сварки необходимо, чтобы сварочное пламя обладало достаточной тепловой мощностью.

Мощность газокислородного пламени или часовой расход горючего газа μ, л/ч, определяется количеством ацетилена, проходящего за один час через горелку, а последнее зависит от толщины свариваемого металла и способа сварки.

При расчетах мощность пламени можно определить по следующим эмпирическим формулам:

где К М – коэффициент пропорциональности, представляет собой удельный расход ацетилена, л/ч, необходимый для сварки данного металла толщиной 1 мм.

Для сварки сталей, содержащих углерод до 0,25%, при правом способе К М выбирается из расчета 120−150 л/ч ацетилена, а при левом способе − 100−130 л/ч. Причем, меньшие значения принимают при сварке легированных сталей.

Для сварки стали наибольшее применение получили горелки инженерного типа малой (Г2-04) и средней (Г3-03) мощности, работающие на ацетилене. Эти горелки имеют аналогичную конструкцию и отличаются, главным образом комплектуемыми наконечниками. Например, горелка типа Г2 комплектуется пятью наконечниками (№ 0, 1, 2, 3, и 4), горелка Г3 – семью наконечниками. Диапазоны расхода газа через наконечники соседних номеров взаимно перекрываются. Это обеспечивает взаимность плавной регулировки мощности пламени горелок путем замены наконечников и манипулирования вентилями горелки. При сварке тип горелки и номер наконечника выбирают в зависимости от толщины свариваемой стали по табл. 9. Горелки Г2-04 комплектуют четырьмя наконечниками (№ 1−№ 4), а горелки ГЗ-03 – тремя наконечниками (№ 3, 4 и 6). Остальные наконечники поставляются по особому заказу.

Прогрессивным источником газопитания передвижных сварочных постов является использование растворенного ацетилена в баллонах. Однако на сегодняшний день недостаточно производственных мощностей для удовлетворения выпуска растворенного ацетилена в баллонах. Поэтому сейчас широко применяются передвижные ацетиленовые генераторы отечественного производства.

Состав пламени определяется соотношением расхода кислорода к ацетилену. Он устанавливается по внешнему виду пламени. В процессе работы сварщик должен следить за характером пламени и регулировать его состав в зависимости от свойств свариваемых материалов. При сварке углеродистых и легированных сталей с содержанием углерода до 0,25%, это соотношение равняется 1,1−1,2.

Последовательность выполнения расчета

Студент согласно своему варианту, что соответствует номеру по списку группы, выписывает исходные данные для расчета по табл. 11 и выполняет эскиз поперечного сечения сварного шва (табл. 12).

Определить диаметр присадочного материала, выбрать марку сварочной проволоки и параметры прихватки.

Определить мощность пламени газовой горелки и выбрать номер наконечника газовой горелки.

Подобрать переносной газовый генератор и занести в отчет его техническое характеристики.

Определить массу наплавленного металла и расход электродной проволоки.

Определить основное время сварки и скорость сварки.

Таблица 9

Технические характеристики газовых горелок

Тип горелки

Толщина стали, мм

Рабочее давление

газов, МПа

Расход горючего

Коэффициент наплавки,

С 2 Н 2 О 2
Малой мощности Г2-04 0 1 2 3 4 0,2−0,5 0,5−1 1−2 2−4 4−6 0,001−0,1 0,15−0,25 30−50 60−125 125−230 230−400 400−620 4−2 6−4 7−6 10−7 14−13
Средней мощности Г3-03 0 1 2 3 4 5 6 7 0,2−0,5 0,5−1 1−2 2−4 4−7 7−11 11−18 17−30 0,001−0,1 0,15−0,35 30−50 60−125 125−230 230−400 400−620 700−950 1350−1750 1800−2500 4−2 6−4 7−6 10−7 14−7 16−15 18−17 21−18

Таблица 10

Основные технические характеристики некоторых типов переносных ацетиленовых генераторов

Марка генераторов Система взаимодействия карбида каль-ция с водой Производи-тельность, м 3 /ч Рабочее давление ацетилена, МПа Гранулация карбида кальция
АСК-0,5 ВВ 0,5 0,01−0,03 1,3
ГВД-0,8 ВВ 0,8 0,007−0,03 2
АНВ-1,25 ВК-ВВ 1,25 0,0015−0,002 5
АСМ-1,25 ВВ 1,25 0,01−0,07 2,2
АСВ-1,25 ВВ 1,25 0,01−0,07 3
МГ-55 ВВ 2,0 0,0035 2−2,5
ПЗР-1,25 ВВ 1,25 0,01−0,02 4

Типы сварных соединений и подготовка металла под сварку

В процессе сварки плавлением происходит расплавление основного, а в большинстве случаев и присадочного металлов. Регулирование степени расплавления присадочного металла при газовой сварке может быть осуществлено в весьма широких пределах. Степень расплавления основного металла определяется мощностью пламени, геометрическими размерами и теплофизическими свойствами металла.

Обычными сварочными горелками возможно в один проход проварить металл ограниченной толщины (для стали эта толщина около 15 мм). Однако без ущерба для производительности сварки проплавление основного металла лучше осуществлять на меньшую глубину (например, для стали до 4-5 мм). В то же время сварка тонкого металла (менее 0,8-1 мм) является затруднительной в связи с сильным его расплавлением. Поэтому при сварке применяется специальная подготовка кромок.

Основным типом сварного соединения является стыковое. При газовой сварке помимо стыковых часто применяются торцовые и угловые соединения (рис. 44). Стыковые соединения с отбортовкой кромок и торцовые соединения обычно свариваются без присадочного металла. Угловое соединение с наружным швом выполняется как с присадочным металлом, так и без него.

Соединения тавровые и внахлестку применяются при газовой сварке только для небольших толщин, так как при увеличении толщины резко ухудшается выполнение самой сварки, в связи с неравномерностью прогрева кромок и значительными короблениями при сварке. Сварка подобных соединений производится угловыми швами (рис. 45). При этом используются в основном вогнутые (облегченные) швы, широко применяемые в авиационной промышленности как более стойкие при знакопеременных нагрузках и дающие меньшие коробления.

В целях получения доброкачественных сварных соединений металл на кромках и вблизи от них (до 30-50 мм) должен быть перед сваркой зачищен от различных загрязнений (толстого слоя окислов, жировых пятен и пр.). Эта очистка производится либо механическими способами (пескоструйной очисткой, ручными или механизированными стальными щетками), либо химической очисткой. Иногда перед очисткой деталей щеткой производится прогрев газовым пламенем, отделяющий окислы от металла и сжигающий ряд других загрязнений.

Обычно перед сваркой осуществляется совместно со сборкой и закрепление элементов, подлежащих сварке, различными приспособлениями, а чаще всего прихватками (короткими швами). Общий принцип расположения прихваток показан на рис. 46.

При сварке длинных швов незакрепленных листов во избежание недопустимых деформаций сборка иногда выполняется с расширяющимся зазором (с разведением концов). Подготовка кромок, сборка и выполнение прихваток во многом определяют качественное выполнение сварки.

Режим и техника выполнения газовой сварки

Эффективность выполнения процесса газовой сварки определяется режимом сварки (мощностью пламени, скоростью сварки, диаметром присадочного металла) и техникой сварки (включающей расположение горелки и присадочного металла по отношению к свариваемому металлу, а также движение горелки и присадочного металла).

Мощность пламени определяется количеством сжигаемого в единицу времени горючего и обычно измеряется в л/ч.

Из практики установлено, что необходимая для сварки мощность пламени V a примерно пропорциональна толщине свариваемого металла:

где δ - толщина металла в мм;

R - коэффициент пропорциональности (л/ч·мм), равный для низкоуглеродистой стали 100-130, для чугуна и нержавеющей стали 75-100, для алюминия 100-150, для меди 150-225.

Средняя скорость перемещения пламени (υ в м/ч) по отношению к свариваемому металлу при ручной сварке на установившемся режиме прогрева и расплавления свариваемого металла также зависит от толщины:

где А - коэффициент, зависящий от свойств свариваемого металла и в некоторой степени от толщины (для стали средних толщин А = 12-15; для никеля А = 9 - 11).

Диаметр присадочного металла (обычно в виде прутков проволоки или литых стержней) выбирается в зависимости от толщины свариваемого металла и его теплофизических свойств. В большинстве случаев диаметр присадки d берется от δ/2 до δ.

Большое значение для получения швов хорошего качества имеет техника сварки, позволяющая при сварке правильно вводить и распределять тепло в свариваемом изделии, проплавлять свариваемые кромки и присадочный металл, управлять жидким металлом сварочной ванны.

Распределение тепла, вводимого в свариваемое изделие, и влияние механического действия пламени зависят от угла наклона оси пламени к поверхности свариваемого металла (φ). Проплавление основного металла и скорость сварки также зависят от этого угла. При малом значении угла φ пламя как бы скользит по поверхности металла, мало его проплавляя, но, подогревая находящийся впереди металл, способствует его тепловой подготовки для последующего расплавления. При значении φ близком к 90° глубина проплавления увеличивается, а степень тепловой подготовки еще нерасплавленного металла уменьшается. В связи с этим сварка металлов малых толщин производится при малом значении угла φ. При сварке больших толщин расположение горелки изменяют, направляя пламя более вертикально. Ниже приводятся ориентировочные углы наклона пламени при сварке сталей:

При сварке легких металлов (алюминия, магния) угол наклона φ должен быть небольшим, чтобы избежать выдувания металла из ванны механическим действием пламени.

В процессе выполнения шва угол наклона пламени может меняться. В начале сварки, когда основной металл еще не подогрет, требуется держать угол φ большим, уменьшая его до нормальной величины в процессе сварки по мере разогрева свариваемого металла.

Важным фактором, влияющим на эффективность газовой сварки, является выбор способа, определяемого взаимным расположением пламени и присадочного металла по отношению к направлению сварки.

Существует два способа сварки: левый и правый.

При левом способе сварки (рис. 47, а) пламя направляется вперед на еще не сваренные кромки основного металла и располагается между сваренным участком шва и присадочным металлом. В этом случае кромки, подлежащие сварке, предварительно подогреваются как непосредственно пламенем, так и теплом, распространяющимся в результате теплопроводности металла. Этот способ эффективен при малой толщине (для стали при δ<4 мм) и позволяет получить большую скорость сварки.

При правом способе (рис. 47, б) пламя направлено в сторону уже сваренного участка шва, а присадочный металл расположен между пламенем и сваренным участком шва. В этом случае впереди лежащие кромки пламенем не подогреваются, но ввод тепла в сварочную ванну оказывается более эффективным, особенно при наличии разделки кромок, так как ядро пламени можно ближе подвести к поверхности расплавляемого металла. Этот способ эффективнее при больших толщинах металла (для стали при δ > 5 мм).

При правой сварке металл шва в процессе охлаждения омывается пламенем и остывает несколько медленнее. Это позволяет в ряде случаев получать швы с лучшими свойствами металла, чем при левой сварке.

Выполнение швов при правом способе сложнее и требует соответствующих навыков сварщиков.

Для достижения наибольшей производительности труда при минимальной затрате материалов, в частности горючего, необходимо стремиться к максимальному сокращению тепловых потерь. Практика ручной газовой сварки показывает, что производительность труда сварщиков в зависимости от технических приемов может меняться на 30-50%.

Технические приемы сварки (включающие перемещения горелки и присадки) зависят от расположения шва в пространстве, формы подготовки кромок, толщины и свойств свариваемого металла.

Наиболее просто выполняются нижние швы, т. е. швы, расположенные на верхней горизонтальной плоскости свариваемого изделия. При выполнении нижнего шва с отбортовкой кромок (или торцового) применяется левая сварка, причем траектория перемещения горелки должна быть прямолинейной, без поперечных колебаний. При загрязненном металле для улучшения сплавления иногда приходится применять продольно-колебательные движения горелкой в вертикальной плоскости. При левой сварке стыковых швов при δ = 2-З мм, выполняемой без присадочного металла, применяются поперечные колебания горелки (рис. 48, а).

При увеличении толщины металла стыковые швы выполняются левой сваркой с применением присадочного металла, как указано на рис. 48, б (для δ=4-5 мм) и рис. 48, в (для δ > 5-6 мм).

Правая сварка при толщинах около 5-6 мм характеризуется в основном поперечными колебаниями присадки, а при больших толщинах - и горелки, и присадки (рис. 48, г). В последнем случае как пламя, так и присадка подводятся к кромкам синхронно, в отличие от левой сварки, когда пламя и присадка, как правило, располагаются на противоположных кромках (рис. 48, б и в).

Вертикальные швы (т. е. швы, расположенные отвесно на вертикальной плоскости), выполняются либо сверху вниз (при малых б), либо снизу вверх. Сварка сверху вниз выполняется правым способом; сварка снизу вверх выполняется как левым, так и правым способами.

При сварке толщин 2-8 мм весьма эффективной является сварка двойным валиком. При этом способе в нижней части стыка проплавляется сквозное отверстие. Пламя, располагаясь в этом отверстии и постепенно поднимаясь снизу вверх, расплавляет верхнюю часть отверстия. Этим расплавленным и присадочным металлом заполняется ванна, образующаяся на нижней поверхности этого отверстия (рис. 49).

При сварке горизонтальных швов (швов, расположенных горизонтально на вертикальной плоскости) металл ванны стремится стечь на нижнюю кромку. Поэтому сварку обычно выполняют правым способом (используя механическое поддерживание пламенем). При этом ванну держат несимметрично (с перекосом) по отношению к свариваемым кромкам (рис. 50).

Потолочные швы (швы, выполняемые на горизонтальной плоскости снизу, над головой сварщика) лучше формируются при правой сварке.

Во всех случаях весьма важным является использование присадочного металла:

1) для регулирования температуры ванны, которое осуществляется погружением и извлечением из нее присадки;

2) для защиты от расплавления кромок уже сваренного участка шва при правой сварке;

3) для поддержания ванны присадкой (при сварке горизонтальных и потолочных швов).

Пороки сварки, связанные с техникой ее выполнения

Большинство пороков сварных швов связано с техникой выполнения сварки. Рассмотрим основные из них.

Непровар - недостаточное сплавление или отсутствие сплавления кромок основного металла с металлом шва. Причинами непровара являются: неправильный выбор мощности пламени и скорости сварки; неправильное распределение тепла между кромками, а также неправильная разделка кромок (малый угол скоса, большое притупление); малый зазор или значительная загрязненность кромок окислами. Виды непроваров представлены на рис. 51.

Подрез (рис. 52, а) является следствием избыточного расплавления кромок основного металла при недостаточном количестве наплавляемого присадочного металла.

Наплыв (рис. 52, б) вызывается недостаточным прогревом и расплавлением верхней части кромок; наплывы в ряде случаев сопровождаются скрытым непроваром кромок.

В ряде случаев недостаточное расплавление присадочного металла приводит и к ослаблению сечения шва (рис. 52, в), что для большинства стыковых швов является недопустимым.

Сквозной прожог - порок, который может получаться при значительном нагреве основного (главным образом тонкого) металла у недостаточно квалифицированного сварщика.

Незаделанные кратеры в концах швов - порок, вызываемый невнимательностью сварщика.

Наплывы, подрезы, недостаточное сечение швов, незаделанные кратеры (и некоторые виды непроваров и прожогов) могут быть обнаружены при внешнем осмотре и замерах. Для обнаружения непроваров в большинстве случаев необходим, кроме того, осмотр швов с обратной стороны.

Пороки, обнаруживаемые при внешнем осмотре, называются наружными. В сварных швах, кроме наружных пороков, могут быть и внутренние, не обнаруживаемые при внешнем осмотре.

К внутренним порокам, помимо некоторых видов непроваров, относятся шлаковые включения и пористость.

Шлаковые включения появляются: при применении пламени с избытком кислорода; при недостаточном перемешивании ванны присадочным металлом; при слишком быстром застывании ванны вследствие недостаточного прогрева металла и т. д. Кроме того, причиной таких включений могут являться значительные загрязнения основного и присадочного металла и неправильное использование флюсов.

Пористость шва получается в результате выделения газов при охлаждении, когда они не успевают удаляться из металла. Причиной пористости при газовой сварке является неправильная регулировка пламени и чрезмерно быстрое остывание ванны в результате неправильной техники сварки.

Совершенно недопустимым пороком являются трещины, вызываемые низкими сварочными свойствами свариваемого металла, качеством присадочного металла, в частности его загрязнением различными примесями, а также неправильной технологической последовательностью сборочных и сварочных операций.

Кроме пороков макроструктуры, в сварных швах, выполненных газовой сваркой, иногда имеются и пороки микроструктуры, из которых наиболее характерными являются перегрев и пережог.

Перегрев связан с длительным воздействием нагрева и, как правило, приводит к весьма крупнозернистой структуре как металла шва, так и околошовной зоны основного металла. Такой крупнозернистый металл обладает худшими механическими свойствами.

Структура перегретого металла может быть исправлена общей или местной термической обработкой.

Пережог связан также с длительным нагревом и, кроме того, с окислительным действием пламени, приводящим к расположению окисных включений по границам зерен. Пережог резко ухудшает свойства металла и не может быть устранен последующей термической обработкой. При его обнаружении швы должны быть удалены и переварены вновь.

Пути повышения производительности газовой сварки

В ряде случаев применения сварки принципиально важным направлением является автоматизация и механизация процесса. Для газовой сварки в ее современном применении этот путь хотя и возможен, но не находит широкого применения в связи с заменой газовой сварки другими процессами в массовом производстве, в которых оправдывается применение специализированных автоматов.

При индивидуальных и мелкосерийных работах применение специализированных автоматов нерационально, поэтому следует рассмотреть пути возможного повышения производительности ручной газовой сварки, используемые сварщиками-передовиками.

При ручной сварке возможно применение больших мощностей пламени, чем используются обычно. Однако это требует высокой квалификации сварщиков и приводит к повышению производительности труда примерно на 20% при увеличении мощности пламени около 50%. Вопрос о рациональности применения этого метода должен решаться в каждом частном случае.

Применение жесткого пламени (т. е. пламени с повышенными скоростями истечения горючей смеси из горелок) приводит к большей концентрации нагрева и тем самым к увеличению производительности сварки. При этом скорость истечения при универсальных горелках может быть предельно увеличена на 20-30% от нормальных скоростей истечения. Сварка жестким пламенем еще более затруднительна, чем сварка пламенем повышенной мощности, в связи с усиленным выдуванием металла из сварочной ванны.

Более эффективным является применение «активированного» пламени, т. е. пламени с несколько повышенным количеством кислорода. При этом одновременно с повышением эффективности прогрева и расплавления будет происходить и окисление расплавленного металла. Для раскисления жидкого металла необходимо в ванну вводить достаточное количество раскислителей (при сварке углеродистых сталей обычно Si и Мn), которые, как правило, вводятся с присадочным металлом (например, для стали применяется присадочная проволока с содержанием Si 0,5-0,8% и Мn 0,8-1%). Добиваясь повышения производительности сварки, следует учитывать увеличение стоимости присадочного металла.

Распространенными формами повышения производительности газовой сварки являются также использование местного или общего предварительного подогрева перед сваркой с применением дешевого топлива (печи на коксовом газе, горны и пр.). Эти методы особенно эффективны при массовом производстве или заварке брака литых деталей.

Некоторые сварщики при сварке мелких деталей, умело располагая их на сварочном (обычно поворотном) столе, используют для предварительного подогрева тепло отходящих газов пламени, подогревающих следующую деталь при сварке предыдущей. Это приводит к повышению производительности сварки на 20- 40% без какого-либо увеличения расхода материалов.

Рациональные методы повышения экономичности газовой сварки должны изыскиваться в каждом отдельном случае ее применения.

Администрация Общая оценка статьи: Опубликовано: 2012.06.02

При газовой сварке происходят разнообразные процессы: физические, связанные с нагревом и расплавлением металла, формированием шва, а также химические, обусловленные горением, взаимодействием флюса и присадочного материала с расплавленным металлом.

Основным инструментом газосварщика является сварочное пламя. Оно образуется при сгорании горючего газа в кислороде. От соотношения объемов кислорода и горючего газа в их смеси зависят внешний вид, температура и характер влияния сварочного пламени на расплавленный металл.

Рассмотрим строение пламени (рис. 7.1). Сварочное пламя имеет три четко различимые области: ядро 7, восстановительную зону 2 и факел 3.

Рис. 7.1. Строение ацетиленового сварочного пламени и распределение температуры по длине факела: 1 - ядро; 2 - восстановительная зона; 3 - факел

Ядро пламени представляет собой ярко светящуюся зону, в наружном слое которой сгорают раскаленные частицы углерода, образующиеся при разложении ацетилена.

Восстановительная зона , более темная, состоит из оксида углерода и водорода, которые раскисляют расплавленный металл, отбирая кислород от его оксидов.

Факел - периферийная часть пламени - представляет собой зону полного сгорания углеводородов в кислороде окружающей среды.

В зависимости от соотношения объемов кислорода и ацетилена получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее (рис. 7.2).

Рис. 7.2. Виды сварочного пламени: а - нормальное; б - окислительное; в - науглероживающее; 1 - ядро; 2 - восстановительная зона; 3 - факел

Нормальное сварочное пламя образуется тогда, когда в горелке на один объем кислорода приходится один объем ацетилена. В нормальном пламени ярко выражены все три зоны.

Ядро имеет резко очерченную форму, близкую к цилиндру с ярко светящейся оболочкой. Температура ядра достигает 1000 °С.

В восстановительной зоне, содержащей продукты неполного сгорания ацетилена, проводят сварку. Температура этой зоны в точке, отстоящей на 3...6 мм от ядра, составляет 3150°С. Факел имеет температуру 1200... 2500 °С.

Нормальным сварочным пламенем осуществляют сварку сталей всех марок, меди, бронзы и алюминия.

Окислительное сварочное пламя получают при избытке кислорода, когда в горелку подают на один объем ацетилена более 1,3 объема кислорода. Ядро такого пламени имеет укороченную, конусообразную форму. Оно приобретает менее резкие очертания и более бледную окраску, чем у нормального пламени. Протяженность восстановительной зоны уменьшается по сравнению с нормальным пламенем. Факел имеет синевато-фиолетовую окраску. Горение сопровождается шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше, чем у нормального, однако при сварке таким пламенем из-за избытка кислорода образуются пористые и хрупкие швы.

Окислительное пламя применяют при сварке латуни и пайке твердыми припоями.

Науглероживающее сварочное пламя получают при избытке ацетилена, когда в горелке на один объем ацетилена приходится не более 0,95 объема кислорода. Ядро такого пламени теряет резкость очертаний, на его конце появляется зеленый венчик, по наличию которого судят об избытке ацетилена. Восстановительная зона существенно светлее, чем у нормального пламени, и почти сливается с ядром. Факел приобретает желтую окраску. При значительном избытке ацетилена пламя коптит. Температура науглероживающего пламени ниже, чем у нормального и окислительного.

Слегка науглероживающим пламенем сваривают чугун и осуществляют наплавку твердых сплавов.

Газосварщик регулирует и устанавливает вид сварочного пламени «на глаз».

При выполнении сварочных работ необходимо, чтобы сварочное пламя обладало тепловой мощностью, достаточной для расплавления свариваемого металла.

Мощность пламени при газовой сварке зависит от расхода ацетилена - объема газа, проходящего за один час через горелку. Мощность регулируют подбором наконечника горелки и изменением положения ацетиленового вентиля. Мощность пламени выбирают в соответствии с толщиной свариваемого металла и его теплофизическими свойствами.

Расход ацетилена, дм 3 /ч, необходимый для расплавления слоя свариваемого металла толщиной 1 мм, устанавливают на практике. Так, слой низкоуглеродистой стали толщиной 1 мм расплавляется при расходе ацетилена 100... 130 дм 3 /ч. Чтобы определить расход ацетилена при сварке конкретной детали, нужно умножить расход, соответствующий единичной толщине, на действительную толщину свариваемого металла, мм.

Пример . При сварке низкоуглеродистой стали толщиной 3 мм минимальный расход ацетилена, дм 3 /ч, составит 100х3 = 300, а максимальный - 130х3 = 390.

Угол наклона мундштука горелки к поверхности металла зависит в основном от толщины свариваемых листов и от теплофизических свойств металла. Чем больше толщина металла, тем больше угол наклона мундштука горелки. С изменением толщины стали от 1 до 15 мм угол наклона мундштука меняется в пределах 10-80° (рис. 3). Угол наклона мундштука горелки зависит также от температуры плавления и теплопроводности металла. Чем выше температура плавления металла и чем больше его теплопроводность, тем больше угол наклона мундштука. Так, например, при сварке меди угол наклона мундштука может составлять 60-80°, а при сварке свинца или легко воспламеняющегося магниевого сплава ~ 10°. Наклон мундштука горелки может меняться в процессе сварки. В начальный момент сварки и для лучшего прогрева металла и быстрого образования сварочной ванны угол наклона устанавливают наибольшим (80-90°); в процессе сварки величина угла соответствует толщине и роду свариваемого металла.

Рис. 3.

Мощность пламени зависит от толщины металла и его теплофизических свойств. Чем больше толщина металла и чем выше его температура плавления и теплопроводность, тем большую мощность пламени необходимо выбирать для его сварки. При сварке низкоуглеродистых и низколегированных сталей расход ацетилена устанавливают по формулам:

при правом способе сварки

где д - толщина свариваемой стали, мм.

При сварке чугуна, латуни, бронзы и алюминиевых сплавов мощность пламени устанавливается примерно такая же, как и для сварки стали.

При сварке же меди, обладающей весьма высокой теплопроводностью и достаточно высокой температурой плавления, мощность пламени, если процесс сварки ведут одной горелкой, подбирают по формуле

В процессе газовой сварки происходит нагрев мундштука горелки и, как следствие, увеличивается содержание кислорода в газовой смеси, что приводит часто к окислению металла сварочной ванны. Поэтому в начальный момент работы необходимое соотношение газов в смеси устанавливают при в0=1,05ч1,1. По мере нагревания мундштука горелки количество кислорода постепенно увеличивается до в0=1,2ч1,3, после чего сварщик охлаждает горелку и вновь регулирует пламя.

Диаметр присадочной проволоки зависит от способа газовой сварки. Для левого способа он составляет большую величину, чем для правого. Диаметр присадочной проволоки d для сварки стали толщиной 6 до 15 мм может быть определен по следующим формулам:

для левого способа

для правого способа

При сварке стали толщиной более 15 мм диаметр проволоки выбирают равным 6-8 мм. Движения горелкой и присадочной проволокой оказывают значительное влияние на процесс формирования сварного шва. При сварке в нижнем положении правым способом без разделки кромок при толщине стали более 3 мм или при сварке стали относительно большой толщины левым способом (с разделкой кромок или без нее) наиболее распространенные движения горелкой и концом присадочной проволоки показаны на рис. 4. В этом случае концом присадочной проволоки совершают движения, обратные движениям сварочной горелки. При выполнении угловых или валиковых швов для получения нормальной формы валика горелке и присадочной проволоке придают движения, показанные на рис. 5. В этом случае сварщик быстро перемещает пламя и конец проволоки посредине шва и задерживает их по краям.

Рис. 4.

Рис. 5.

При сварке правым способом металла толщиной 5 мм пламя горелки углубляется в разделку шва (рис. 6) и перемещается вдоль шва без колебательных движений.

Рис. 6.

При сварке стали малой толщины без отбортовки кромок, когда процесс сварки ведется с присадочной проволокой, получил распространение способ последовательного образования сварочных ванночек (рис. 7). При этом каждая последующая ванночка перекрывает предыдущую на 1/3 ее диаметра.

Рис. 7.

В этом случае процесс сварки ведут левым способом. Для получения гладкой и ровной поверхности шва требуется соблюдение двух основных условий: конец присадочной проволоки во избежание окисления не следует выводить за пределы средней зоны пламени; ядро пламени при приближении его к сварочной ванне для предотвращения науглероживания металла шва не должно касаться ее поверхности. Способ последовательного образования сварочных ванночек, или, как его иногда называют, «сварка каплями», позволяет получать весьма высокое качество сварного шва.