Схемы фазовой автоподстройки частоты. Система фапч и ее применения Задание по работе

(лабораторная работа 2, макет с электронным интегратором)

Цель работы:

1) ознакомление с функциональными элементами системы ФАПЧ и принципом ее работы;

2) исследование точности в зависимости от структуры и параметров системы;

3) исследование возможностей изменения динамических свойств системы методом последовательной коррекции.

Описание лабораторной установки

Лабораторная установка состоит из макета системы ФАПЧ, генератора гармонических сигналов и осциллографа. Система ФАПЧ в простейшей комплектации содержит фазовый дискриминатор (преобразует разность фаз двух сигналов в управляющее напряжение), цепи коррекции и управляемый генератор (во времязадающей цепи этого генератора включен управляемый напряжением реактивный элемент). Если входной и выходной сигналы системы ФАПЧ расстроены по фазе (или частоте), то фазовый дискриминатор вырабатывает управляющее напряжение соответствующего знака, под действием которого изменяются параметры времязадающей цепи управляемого генератора и, соответственно, изменяется частота (и фаза) выходного сигнала так, чтобы уменьшить первоначальную расстройку. Без учета нелинейности статических характеристик функциональных элементов и инерционности фазового дискриминатора функцию передачи системы ФАПЧ в разомкнутом состоянии можно представить в виде:

где – функция передачи корректирующей цепи; – коэффициент усиления.

В САУ 1 порядка астатизма динамическая ошибка слежения зависит от скорости изменения воздействия (в нашем случае – фазы) и коэффициента усиления системы:

(1)

где – остаточная ошибка слежения за фазой в градусах (полезно фазу считать размерной величиной); – начальная расстройка частот генераторов [Гц].

Предусмотрены 3 варианта включения простейшей системы ФАПЧ (переключатель S1):

Без коррекции ( =1);

;

С последовательной коррекцией вида: ,

причем постоянные времени цепей коррекции T 1 , T 2 и T 3 зависят от номиналов резисторов и емкостей, указанных на макете.

Частотные и фазовые соотношения сигналов управляемого и внешнего генераторов наблюдаются по фигурам Лиссажу на экране осциллографа. Для измерения ошибки слежения используется фазовращатель, включенный на выходе управляемого генератора. Предварительно устанавливают ручку «Расстройка» внешнего генераторав положение «0» и в разомкнутом состоянии системы ФАПЧ (положение 1 переключателя S1) выполняют ручную грубую подстройку частоты внешнего генератора по конечному результату (фигура Лиссажу – эллипс). Затем замыкают кольцо слежения и с помощью фазовращателя фигура Лиссажу преобразуется к удобной для наблюдения форме (линия или «восьмерка»). В дальнейшем частоту внешнего генератора изменяют ручкой «Расстройка». Плавное изменение частоты входного сигнала влияет на ошибку слежения, что приводит к деформации фигуры Лиссажу. Возвращая фигуру в прежнее положение с помощью фазовращателя, можно измерить (по шкале фазовращателя) величину остаточной ошибки .

Следует иметь в виду, что реальная зависимость из-за нелинейности статической (дискриминационной) характеристики фазового дискриминатора описывается нелинейной нечетной функцией. При этом экспериментально удается получить лишь фрагмент зависимости , на котором следует выявить линейный участок для расчета коэффициента .

Для качественной оценки быстродействия и степени колебательности переходных процессов в системе ФАПЧ в цепи входного сигнала предусмотрена фазосдвигающая цепь, включаемая тумблером «Скачок фазы».

В полной комплектации система ФАПЧ содержит, дополнительно, электронный интегратор: подключается «эквивалент двигателя».

Задание по работе

1. Включить генератор, макет и осциллограф.

2. Разомкнуть систему ФАПЧ (переключатель в положении 1).

3. Настроить осциллограф для наблюдения фигур Лиссажу.

4. Изменяя частоту генератора, обеспечить совпадение частот внешнего генератора и управляемого генератора системы ФАПЧ (эллипс на экране осциллографа). Замкнуть систему ФАПЧ (переключатель в положении 2). Измерить полосу удержания системы ФАПЧ.

5. Ручку «частота генератора» установить в среднее положение (см.п.4). С помощью фазовращателя зафиксировать положение эллипса, представив его в виде линии или «восьмерки». Изменяя частоту генератора (ручка «расстройка»), и измеряя приращение фазового сдвига с помощью фазовращателя, построить зависимость (должна получиться нечетная функция). Для построения графика требуется 3-5 точек при расстройке частоты в одну сторону и столько же точек – в другую.

6. Для линейного участка зависимости определить коэффициент усиления с помощью формулы (1). Это значение согласовать с преподавателем.

7. Используя полученное значение , построить построить асимптотические логарифмические характеристики для 3-х вариантов включения системы ФАПЧ первого порядка астатизма (все ЛХ построить на одном графике для удобства сравнения; параметры корректирующих элементов указаны на макете). По логарифмическим характеристикам оценить качество переходных процессов.

8. Качественно оценить переходные процессы в системе ФАПЧ (для этой цели используется тумблер «скачок фазы»).

9. Включить «эквивалент двигателя» и повторить пп.4-6 (при изменении частоты генератора учесть длительный перезаряд емкости электронного интегратора). Схему электронного интегратора зарисовать и вычислить его передаточную функцию (в общем виде).

1. Функциональная схема системы ФАПЧ, схемы корректирующих элементов с указанием номиналов резисторов и емкостей, схема электронного интегратора, функции передачи разомкнутой системы для всех исследуемых вариантов.

2. Таблица и график зависимости , расчет и постоянных времени корректирующих элементов.

3. Асимптотические ЛХ для 3-х вариантов построения системы ФАПЧ первого порядка астатизма.

4. Сравнительные характеристики переходных процессов и их объяснение.

5. Полосы удержания исследуемых систем ФАПЧ.

6. Структура формирующего фильтра для ситуации Δf=const.

3.4. Контрольные вопросы

1. Как работают функциональные элементы системы ФАПЧ и вся система в целом?

2. Какой параметр входного сигнала является информативным для системы ФАПЧ?

3. Какой вид имеет структура формирующего фильтра в случае Δf(t)=0, Δf(t)=const, Δf(t)=vt? Какой вид имеет структура согласованной САУ?

4. Как изменяются свойства системы ФАПЧ при увеличении (уменьшении) коэффициента усиления ?

5. С какой целью включаются корректирующие элементы в системе ФАПЧ первого порядка астатизма?

6. Как изменяются свойства системы ФАПЧ при электронного интегратора?

Система фазовой автоматической подстройки частоты, далее ФАПЧ (зарубежная аббревиатура Phase - Locked Loop, PLL), представляет собой самостоятельный узел, входящий в состав различной аппаратуры связи, систем спутникового вещания и передачи данных, а также в состав устройств, являющихся стабильными источниками сигналов.

Первая система ФАПЧ была разработана в 1930 году французским инженером Беллизом. Однако широкое применение она получила в 1960 году с появлением первых интегрированных ФАПЧ компонентов. Существовало традиционное предубеждение против ФАПЧ, связанное отчасти со сложностью реализации её на дискретных компонентах, а отчасти - с сомнениями относительно надёжности её работы. Со временем, когда стали появляться высокоинтегрированные компоненты, реализующие на одном кристалле практически все необходимые (за исключением некоторых внешних элементов) узлы ФАПЧ, эта система, при правильном и корректном проектировании, стала достаточно надёжным и заслуживающим внимания узлом.

Систему ФАПЧ можно представить как систему с отрицательной обратной связью, содержащую коэффициент усиления в прямом направлении G(s) и коэффициент обратной cвязи H(s), а также значение e(s), характеризующее разностный сигнал между входным сигналом V i и сигналом цепи обратной связи V 0 .

Передаточная функция замкнутого контура цепи ООС (рис. 1) будет иметь вид:

где, G CL - коэффициент передачи замкнутого контура (от Gain Closed Loop).

где - комплексное число, характеризующее круговой вектор, а - круговая частота.

Фазовый детектор PD (Phase Detector) производит сравнение двух частотных сигналов и формирует выходной сигнал, пропорциональный их фазовой разности. Этот разностный сигнал есть сигнал ошибки, который характеризует стабильность системы, и в установившемся режиме его значение стремится к нулю. Иначе говоря, система стабильна, когда значение e(s) равно нулю. Следовательно, данная система, а соответственно и система ФАПЧ, является автоматической системой регулирования или следящей системой, а мерой регулирования частоты является разность фаз входного (опорного) сигнала и сигнала цепи обратной связи.

Рассмотрим теперь стандартную базовую модель ФАПЧ (рис. 2) и входящие в её состав компоненты:

  • фазовый детектор PD и источник тока CP (Charge Pump);
  • контурный фильтр, или фильтр нижних частот с передаточной функцией Z(s);
  • генератор управляемый напряжением VCO (Voltage-Controlled Oscillator);
  • делитель в цепи обратной связи с коэффициентом деления N.

В фазовом детекторе, как было сказано выше, происходит сравнение двух частотных сигналов и формируется выходной сигнал, пропорциональный их фазовой разности. Когда оба сигнала равны по фазе и частоте, сигнал ошибки будет равен нулю, и контур "замыкается".

Можно привести следующее уравнение, характеризующее значение сигнала ошибки e(s):

когда e(s) = 0,

отсюда следует

Когда F 0 N·F ref , на выходе фазового детектора формируется разностный периодический сигнал, который далее с выхода источника тока подаётся на фильтр нижних частот.

Этот усиленный и отфильтрованный сигнал фазовой ошибки в виде управляющего напряжения, в свою очередь, будет управлять VCO, частота которого будет увеличиваться или уменьшаться по мере необходимости на значение K v V, где K v - чувствительность VCO в МГц/В и V - изменение напряжения на входе VCO. Это будет продолжаться до тех пор, пока значение e(s) не станет равным нулю и контур заблокируется. Следовательно, VCO преобразует поступающее на него входное напряжение в производную фазы по времени, то есть в частоту. Таким образом, источник тока и генератор управляемый напряжением служат в качестве интегратора, который, обнаруживая сигнал ошибки, регулирует значение выходной частоты таким образом, чтобы значение этой самой ошибки свести к нулю. За счёт интегрирования в контуре регулирования появляется фазовый сдвиг на 90º. Таким образом интегратор, включенный в контур цепи ООС, вносит дополнительное запаздывание по фазе на 90º и на частотах, где коффициент усиления равен единице, может вызывать самовозбуждение. Одно из решений - не включать в контур регулирования компоненты, дающие дополнительное запаздывание по фазе, по крайней мере, на частотах, где коэффициент усиления близок к единице.

Чтобы несколько прояснить ситуацию, вернёмся немного назад. Частотой VCO можно управлять, подавая на его вход соответствующее напряжение. Здесь, казалось бы, можно поступить так же, как и в любом усилителе с обратной связью - ввести контур регулирования с некоторым коэффициентом передачи, как это делается при проектировании схем на операционных усилителях. Но имеется одно важное отличие: в схемах на операционных усилителях регулируемая с помощью обратной связи величина совпадала с величиной, измеряемой с целью формирования сигнала ошибки или была хотя бы пропорциональна ей. Так, например, в усилителях напряжения измеряется выходное напряжение и соответствующим образом подстраивается входное. Несколько иная ситуация для системы ФАПЧ, так как здесь мы измеряем фазу, а регулируем частоту, то есть как было сказано выше, происходит интегрирование, за счёт которого появляется тот самый фазовый сдвиг. Однако необходимо заметить, что операционные усилители имеют запаздывание по фазе на 90º почти на всём своём частотном диапазоне, но при этом хорошо работают.

Чтобы не включать в контур элементы, вносящие дополнительное запаздывание по фазе, можно предложить и проанализировать один из вариантов построения контура регулирования, так называемый "контур первого порядка", при котором в качестве источника тока выступает операционный усилитель, но исключается из схемы фильтр низких частот. При таком построении схемы вход VCO непосредственно связан с выходом источника тока на операционном усилителе, что не позволяет сглаживать помехи и флуктуации входного сигнала, так как данная схема не обладает так называемым свойством "маховика", которое обеспечивается благодаря введению фильтрации по низкой частоте. К тому же, "контур первого порядка" не сохраняет постоянным фазовое соотношение между опорным сигналом и сигналом VCO по той самой причине, что выход источника тока непосредственно соединён со входом VCO. Из всего сказанного выше можно предположить, что "контуры первого порядка" не годятся для построения контуров регулирования цепи ФАПЧ.

Следующий подход - это использование "контура второго порядка", в который вводится дополнительная фильтрация по низкой частоте. Такой контур обладает необходимым свойством "маховика", сглаживая тем самым помехи и флуктуации входного сигнала, к тому же он уменьшает полосу захвата, при попадании в которую частота VCO начинает стабилизироваться системой ФАПЧ. Существует также и полоса удержания, то есть максимальная полоса расстройки VCO, в которой замкнутый контур ФАПЧ стабилизирует частоту VCO. Ширина полос захвата и удержания зависит как раз от вида частотно-фазовой характеристики фильтра нижних частот и общего коэффициента передачи контура регулирования. В правильно спроектированной системе ФАПЧ полоса удержания больше или равна полосе захвата, система стабильна и не самовозбуждается. Здесь необходимо также отметить, что при введении фильтрации по низкой частоте несколько увеличивается и время захвата, которое характеризует скорость вхождения в захват и удержание системы ФАПЧ в режиме слежения при резком изменении частоты. Анализируя сказанное выше, можно сделать вывод, что для системы ФАПЧ подходят "контуры второго порядка", которые обеспечивают малые флуктуации фазы выходного сигнала, а также обладают некоторыми свойствами памяти или "маховика".

Полная передаточная функция для ФАПЧ может быть представлена при помощи выражения G CL для системы отрицательной обратной связи:

Здесь вводим дополнительное понятие Forward Gain, обозначенное через G, как коэффициент, характеризующий усиление в прямом направлении, и понятие Loop Gain, обозначенное через GH, как коэффициент передачи контура.

Когда величина GH больше единицы, можно говорить, что контур замыкается, и передаточная функция для системы ФАПЧ с коэффициентом деления N имеет вид:

На рис. 3 представлена зависмость выходной частоты VCO от изменения напряжения на входе.

Прежде чем приступить к рассмотрению методов синтезирования сигналов, желательно рассмотреть некую несколько отвлеченную модель (рис. 4), показывающую процесс формирования последовательности целочисленного (Integer) потока данных.

На рис. 4 обозначены:

При первоначальном запуске системы, то есть при i = 1 и n = 0, P 0 будет иметь какое-то фиксированное значение, которое "пройдя" через делители M и N, даст нам значение 1 . На первом шаге к значению делителя N ничего не прибавлялось, так как при i = 1 n = 0. На втором шаге, при i = 2 и n = 1, мы увеличиваем значение делителя N на n и так далее. Непременным условием является постоянное значение на всех шагах цикла. Казалось бы, всё просто и понятно, но анализируя весь процесс, можно вывести следующие выражения, которые могут пригодиться в анализе работы реальных синтезаторов.

Система фазовой автоподстройки частоты ( - это весьма важный и полезный узел, выпускаемый в виде отдельной интегральной схемы многими изготовителями. ФАПЧ содержит фазовый детектор, усилитель и генератор, управляемый напряжением (ГУН), и представляет собой сочетание в одном корпусе аналоговой и цифровой техники. Мы рассмотрим в дальнейшем применение ФАПЧ для тонального декодирования, демодуляции AM- и ЧМ-сигналов, умножения частот, частотного синтеза, импульсной синхронизации сигналов от шумящих источников (например, магнитной ленты) и восстановления «чистых» сигналов.

Существует традиционное предубеждение против ФАПЧ, связанное отчасти со сложностью реализации ФАПЧ на дискретных компонентах, а отчасти с сомнениями относительно ее надежной работы.

Рис. 9.67. Схема фазовой автоподстройки частоты.

С появлением недорогих и простых в применении устройств ФАПЧ первое препятствие для их широкого применения было преодолено. При правильном проектировании и корректном применении устройства ФАПЧ становятся такими же надежными элементами схемы, как операционные усилители или триггеры.

На рис. 9.67 показана классическая схема ФАПЧ. Фазовый детектор - устройство, которое осуществляет сравнение двух входных частот, и формирует выходной сигнал, пропорциональный их фазовой разности (если, например, частоты различаются, то на выходе появится периодический сигнал на разностной частоте). Если не равна , то отфильтрованный и усиленный сигнал фазовой ошибки будет воздействовать на частоту ГУН, изменяя ее в направлении . При нормальных условиях ГУН быстро производит «захват» частоты , поддерживая постоянный фазовый сдвиг по отношению к входному сигналу.

Поскольку отфильтрованный выходной сигнал фазового детектора является сигналом постоянного тока, а управляющий входной сигнал ГУН-мерой входной частоты, совершенно очевидно, что ФАПЧ можно применять для ЧМ-детектирования и тонального декодирования (используемое при цифровой передаче по телефонным линиям). Выходной сигнал ГУН - это сигнал местной частоты, равной , таким образом, ГУН выдает чистый опорный сигнал, который может содержать шумы. Поскольку выходной сигнал ГУН может иметь любую форму (треугольную, синусоидальную и т. п.), это позволяет формировать, допустим, синусоидальный сигнал, синхронизированный с последовательностью входных импульсов.

В одном из часто встречающихся применений ФАПЧ между выходом ГУН и фазовым детектором включают счетчик по модулю , обеспечивая, таким образом, умножение входной эталонной частоты . Это - идеальный метод генерации импульсов синхронизации на частотах, кратных частоте сетевого напряжения, для интегрирующих АЦП (двухстадийных и с уравновешиванием заряда) с полным подавлением помех на сетевой частоте и ее гармониках. Подобные схемы являются основными при построении частотных синтезаторов.

Компоненты ФАПЧ.

Фазовый детектор. Существуют два основных типа фазовых детекторов, которые иногда называют тип 1 и тип 2. Фазовый детектор типа 1 предназначен для работы с аналоговыми сигналами или цифровыми сигналами прямоугольной формы, а детектор типа -для работы по логическим переходам (фронтам). Типичным представителем детекторов типа 1 является детектор 565 (линейный), а детектор КМОП 4096 можно отнести и к тому, и к другому типу.

Самым простым фазовым детектором является детектор типа 1 (цифровой), который представляет собой простой вентиль ИСКЛЮЧАЮЩЕЕ ИЛИ (рис. 9.68). На рисунке показана зависимость выходного напряжения от разности фаз при использовании фильтра низких частот и прямоугольного входного колебания со скважностью 50%. Фазовый детектор типа 1 (линейный) имеет аналогичную зависимость выходного напряжения от фазовой разности, хотя его схема представляет собой «четырехквадрантный умножитель», известный также под названием «балансный смеситель». Фазовые детекторы этого типа, обладающие высокой линейностью, находят широкое применение в синхронном детектировании, которое мы рассмотрим в разд. 15.15.

Фазовый детектор типа 2 обладает чувствительностью только по отношению к расположению фронтов сигнала и входного сигнала ГУН, как показано на рис. 9.69.

Рис. 9.68. Фазовый детектор (тип 1), выполненный по схеме Исключающее ИЛИ.

Схема фазового компаратора генерирует выходные импульсы либо отставания, либо опережения в зависимости от того, когда появляются логические переходы выходного сигнала ГУН, после или до переходов опорного сигнала соответственно. Ширина этих импульсов равна промежутку времени между соответствующими фронтами, как показано на рисунке. Во время действия этих импульсов выходная схема либо отводит, либо отдает ток, а в промежутках между импульсами находится в разомкнутом состоянии, формируя зависимость между выходным напряжением и разностью фаз, показанную на рис. 9.70. Процесс абсолютно не зависит от скважности импульсов на входе в отличие от ситуации с рассмотренным ранее фазовым компаратором типа 1. Другой привлекательной особенностью этого фазового детектора является то, что импульсы на выходе полностью исчезают, когда два сигнала засинхронизированы. Это означает, что на выходе отсутствуют «пульсации», которые вызывают периодическую фазовую модуляцию в контуре, как это имеет место при использовании фазового детектора типа 1.

Рис. 9.69. Фазовый детектор (тип 2) опережения-отставания, работающий «по фронтам».

Сравним свойства фазовых детекторов двух основных типов:

Существует еще одно различие между этими двумя типами фазовых детекторов. Детектор типа 1 всегда генерирует выходное колебание, которое в дальнейшем должно фильтроваться с помощью фильтра контура регулирования (более подробно обсудим это позже). Таким образом, ФАПЧ с фазовым детектором типа 1 содержит контурный фильтр, работающий как фильтр нижних частот, сглаживающий логический выходной сигнал полной амплитуды. В таком контуре всегда присутствует некоторая остаточная пульсация и, следовательно, периодические фазовые изменения. В тех схемах, где ФАПЧ используется для умножения или синтеза частот, к выходному сигналу добавляются еще и «боковые полосы фазовой модуляции» (см. разд. 13.18).

Фазовый детектор типа 2, наоборот, генерирует выходные импульсы только тогда, когда между опорным сигналом и сигналом ГУН имеется фазовая разность. Поскольку в противном случае выход фазового детектора выглядит как разомкнутая цепь, конденсатор контурного фильтра работает как элемент запоминания напряжения, поддерживая напряжение, сохраняющее требуемую частоту ГУН. Если опорный сигнал «уходит» по частоте, то фазовый детектор генерирует последовательность коротких импульсов, заряжая (или разряжая) конденсатор до нового напряжения, необходимого для того, чтобы вновь вернуть ГУН в синхронизм.

Генераторы, управляемые напряжением. Важным компонентом ФАПЧ является генератор, частотой которого можно управлять, используя выходной сигнал фазового детектора. Некоторые ИМС ФАПЧ содержат ГУН (например, линейный элемент 565 и КМОП-элемент 4046). Кроме того, имеются отдельные ИМС ГУН, перечисленные в табл. 5.4. Интересный класс ГУН составляют элементы с синусоидальным выходом (8038, 2206 и т. п.), поскольку они позволяют генерировать чистое синусоидальное колебание, засинхронизированное с входным колебанием «страшного» вида. Следует упомянуть еще один класс ГУН, напряжения в частоту», которые обычно проектируются с оптимальной линейностью; они имеют, как правило, скромную максимальную частоту (до 1 МГц) и вырабатывают импульсы с логическими уровнями (см. разд. 5.15).

Следует помнить о том, что частота ГУН не ограничивается скоростью срабатывания логических схем. Можно, например, использовать радиочастотные генераторы, настраиваемые с помощью варактора (диод с изменяемой емкостью) (рис. 9.71).

Продвигаясь в соответствии с этой идеей еще на один шаг, можно было бы даже использовать такой элемент, как отражательный клистрон, - микроволновый (гигагерцевый) генератор, с электрической настройкой за счет изменения напряжения на отражателе. Разумеется, ФАПЧ, использующая такие генераторы, потребует радиочастотный фазовый детектор.

Зависимость частоты от управляющего напряжения ГУН, используемого в ФАПЧ, может не обладать высокой линейностью, однако в случае большой нелинейности коэффициент усиления в контуре будет изменяться в соответствии с частотой сигнала и придется обеспечивать больший запас устойчивости.

МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.П. ОГАРЕВА

Институт физики и химии

Кафедра радиотехники

Лабораторная работа

По курсу: «Радиоавтоматика»

На тему: «ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ»

Студент 403 группы д/о Гончаров Д.Л.

Специальность 210601 «РЭСиК»

Проверил Пьянзин Д.В.

Саранск 2014

1. Общие сведения.

Системой фазовой автоподстройки частоты (ФАПЧ) называется система автоматического регулирования, обеспечивающая автоматическое регулирование частоты управляемого генератора в устройствах приема и обработки сигналов в соответствии с частотой входного сигнала и использующая в качестве измерительного элемента фазовый детектор.

Системы ФАПЧ используются для подстройки частоты гетеродина в супергетеродинных радиоприемных устройствах, выделения несущей частоты в демодуляторах систем передачи сообщений, при реализации когерентного приема сигналов, измерения частоты с помощью узкополосных следящих фильтров, при формировании высокостабильных колебаний в синтезаторах частот различных радиотехнических устройств и т. д. Системы ФАПЧ могут быть реализованы в аналоговом и цифровом виде.

Особенностью системы ФАПЧ (находящейся в состоянии синхронизации) является нулевая статическая ошибка по частоте, т. е. равенство частот колебаний подстраиваемого генератора (гетеродина) и эталонного (входного) колебания
. Вместе с тем в электронных системах ФАПЧ существует статическая ошибка регулирования по фазе, т, е. статическое отличие фаз колебаний подстраиваемого генератора, управляемого напряжением (ГУН), и эталонного сигнала. Системы ФАПЧ обычно имеют сравнительно узкий диапазон начальных расстроек, в котором они осуществляют подстраивающее действие. При анализе работы системы ФАПЧ рассматривают режимы удержания и захвата.

Режимом удержания называется установившийся режим равенства частот
, соответствующий эффективной работе системы ФАПЧ при медленных изменениях начальной расстройки. При этом имеются в виду изменения, скорость которых много меньше скорости переходных процессов в системе.

Режимом захвата называется процесс, возникающий при скачкообразном изменении начальной расстройки и заканчивающийся установлением режима удержания. Характерным различием этих режимов является то, что в режиме захвата существенную роль играют переходные процессы.

Основными характеристиками систем ФАПЧ являются следующие:

Полоса удержания
- область начальных расстроек ГУН, внутри которой система ФАПЧ эффективно работает в режиме удержания.

Полоса захвата
- область начальных расстроек ГУН, внутри которой система ФАПЧ эффективно работает в режиме захвата.

Время захвата t 3 - время втягивания системы ФАПЧ в режим синхронизации, существенно зависящее от значения начальной расстройки между частотой входного колебания и частотой колебания ГУН.

2. Принципы работы системы фазовой автоподстройки частоты.

Основными элементами структурной схемы системы фазовой автоподстройки частоты (рис. 1) являются: фазовый детектор - ФД, фильтр низкой частоты - ФНЧ, усилитель - УС, управляющий элемент УЭ и перестраиваемый (синхронизируемый) генератор - ГУН.

Рис. 1. Структурная схема системы ФАПЧ.

На один вход фазового детектора ФД поступает сигнал
, на второй - высокочастотное колебание
синхронизируемого перестраиваемого генератора. Между выходом ФД и входом управляющего элемента в петле обратной связи находятся фильтр низкой частоты ФНЧ и усилитель постоянного тока УС. Именно эти два элемента структурной схемы практически формируют частотную характеристику системы ФАПЧ и определяют ее петлевой коэффициент передачи. Если частота сигнала ω с и частота колебания на выходе ГУН ω г отличаются друг от друга на постоянную величину Δω, то мгновенное значение разности фаз φ между ними будет равно:

Обычно в качестве фазового детектора ФД (рис. 1) используется аналоговый перемножитель, имеющий на выходе фильтр нижних частот, пропускающий лишь колебание разностной частоты. Тогда на выходе этого перемножителя будет присутствовать колебание вида:

где
коэффициент передачи фазового детектора (аналогового перемножителя).

Если положить коэффициент передачи ФНЧ в полосе пропускания K ФНЧ =1, то напряжение на входе управляющего элемента УЭ будет пропорционально косинусу текущего сдвига фаз между колебаниями:

где
, k - коэффициент передачи петли обратной связи.

Управляющее напряжение используется в системе ФАПЧ для подстройки генератора, управляемого напряжением ГУН. Изменение частоты ω г будет определяться изменением сдвига фаз φ(t).

Рассмотрим подробнее режимы работы системы ФАПЧ.

В зависимости от начальной разности частот ω н входного колебания ω С и частоты ГУН ω Г0 при разомкнутой петле обратной связи система ФАПЧ может находиться в различных режимах (рис. 2). На этом рисунке прямая линия Δω = ω н соответствует разомкнутой петле обратной связи системы ФАПЧ.

Рис. 2. Зависимость разности частот входного сигнала ω с и сигнала ГУН ω г от величины ω н.

Когда начальная расстройка ω Н больше полосы удержания ΔΩ У, в системе ФАПЧ наблюдается режим биений, для которого характерно отсутствие равенства частот ГУН и входного сигнала, т. е. ω С ≠ ω Г. В этом режиме разность фаз входного колебания и колебания ГУН непрерывно возрастает, а напряжение U ФД (t) на выходе фазового детектора изменяется, представляя собой колебательное напряжение переменной частоты. Средняя частота биений меньше начальной расстройки ω Н. Если начальная расстройка увеличивается, то средняя частота биений асимптотически стремится к ω Н (рис. 2). Наличие ФНЧ на выходе фазового детектора ФД при прочих равных условиях приводит к уменьшению амплитуды биений по сравнению со случаем рассмотрения системы ФАПЧ без ФНЧ, т. е. к затруднению ввода системы в состояние синхронизации. Именно поэтому в системах ФАПЧ с ФНЧ полоса захвата всегда меньше полосы удержания (см. рис. 2).

При достижении величиной |ω Н | значения ΔΩ З /2 средняя частота биений стремится к нулю, т. е. через время t З частота ГУН и частота входного сигнала становятся одинаковыми, и система ФАПЧ переходит в режим захвата. На практике полосу захвата ΔΩ З (рис. 2) определяют по моменту синхронизации частот ГУН и входного сигнала при изменении |ω Н | от больших значений к малым.

При наличии синхронизации и изменении расстройки |ω Н | от нулевого значения в сторону увеличения очевидно, что биения колебаний будут отсутствовать вплоть до момента срыва синхронизации при |ω Н |≈ ΔΩ У /2.